1040: [ZJOI2008]骑士
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4780 Solved: 1841
[ Submit][ Status][ Discuss]
Description
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英。他们劫富济贫,惩恶扬善,受到社会各
界的赞扬。最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争。战火绵延五百里,在和平环境
中安逸了数百年的Z国又怎能抵挡的住Y国的军队。于是人们把所有的希望都寄托在了骑士团的身上,就像期待有一
个真龙天子的降生,带领正义打败邪恶。骑士团是肯定具有打败邪恶势力的能力的,但是骑士们互相之间往往有一
些矛盾。每个骑士都有且仅有一个自己最厌恶的骑士(当然不是他自己),他是绝对不会与自己最厌恶的人一同出
征的。战火绵延,人民生灵涂炭,组织起一个骑士军团加入战斗刻不容缓!国王交给了你一个艰巨的任务,从所有
的骑士中选出一个骑士军团,使得军团内没有矛盾的两人(不存在一个骑士与他最痛恨的人一同被选入骑士军团的
情况),并且,使得这支骑士军团最具有战斗力。为了描述战斗力,我们将骑士按照1至N编号,给每名骑士一个战
斗力的估计,一个军团的战斗力为所有骑士的战斗力总和。
Input
第一行包含一个正整数N,描述骑士团的人数。接下来N行,每行两个正整数,按顺序描述每一名骑士的战斗力
和他最痛恨的骑士。
Output
应包含一行,包含一个整数,表示你所选出的骑士军团的战斗力。
Sample Input
3
10 2
20 3
30 1
10 2
20 3
30 1
Sample Output
30
bzoj第一道树形DP,同时也是bzoj第150题
不写题解都对不起自己。
题解:容易发现题目中有环,所以我们得先把环处理一下。
易得每个环都只有两条边,所以我们枚举,选其中一条边的dp值,以及选另一条的dp值,两者选最大。
f[i][0]不选i这个骑士的骑士团最大战斗力,f[i][1]表示选这个骑士的骑士团最大战斗力
f[i][0]+=max(f[y][0],f[y][1])(y表示i的儿子)
f[i][1]+=f[y][0]
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const long long N=1000005;
struct node{
long long x,y,next;
}sa[N*2];long long len=1,first[N];
long long n,a[N];
bool vis[N];
void ins(long long x,long long y)
{
len++;
sa[len].y=y;
sa[len].next=first[x];
first[x]=len;
}
long long bi,ls,rs;
void dfs(long long x,long long fa)
{
vis[x]=true;
//prlong longf("%d")
for(long long i=first[x];i!=-1;i=sa[i].next)
{
long long y=sa[i].y;
if(y==fa) continue;
if(vis[y]==false) dfs(y,x);
else
{
bi=i;ls=x;rs=y;
}
}
}
long long f[N][3];
void tr_dp(long long x,long long fa)
{
//
f[x][0]=0;f[x][1]=a[x];
for(long long i=first[x];i!=-1;i=sa[i].next)
{
long long y=sa[i].y;
if(y==fa||i==bi||i==(bi^1)) continue;//prlong longf("%d %d\n",x,y);
tr_dp(y,x);
f[x][0]+=max(f[y][0],f[y][1]);
f[x][1]+=f[y][0];
}
}
int main()
{
memset(first,-1,sizeof(first));
scanf("%lld",&n);
for(long long i=1;i<=n;i++)
{
long long x;
scanf("%lld%lld",&a[i],&x);
ins(x,i);
ins(i,x);
}
long long ans=0;
memset(vis,false,sizeof(vis));
for(long long i=1;i<=n;i++)
if(vis[i]==false)
{
//vis[i]=true;
dfs(i,-1);//prlong longf("!%d %d %d\n",bi,ls,rs);
tr_dp(ls,-1);
long long yu=f[ls][0];
tr_dp(rs,-1);
yu=max(yu,f[rs][0]); //prlong longf("%d\n",yu);
ans+=yu;
}
printf("%lld",ans);
}