无监督学习算法
尽管有监督的机器学习和深度学习取得了成功,但有一种观点认为无监督的学习具有更大的潜力。 监督学习系统的学习受到其培训的限制; 即,监督学习系统只能学习经过培训的任务。 相比之下,无监督系统理论上可以实现“人工通用情报”,这意味着有能力学习人类可以学习的任何任务。 但是,该技术还不存在。
如果监督学习的最大问题是标记训练数据的开销,那么无监督学习(未标记数据)的最大问题是它通常不能很好地工作。 尽管如此,无监督学习的确有其用处:它有时可以减少数据集的维数,探索数据的模式和结构,寻找相似对象的组以及检测数据中的异常值和其他噪声。
通常,在探索性数据分析中尝试尝试无监督学习方法以发现模式和聚类,减少数据的维数,发现潜在特征并消除异常值是值得的。 然后,您是否需要继续进行监督学习还是使用预先训练的模型进行预测取决于您的目标和数据。
什么是无监督学习?
想想人类儿童如何学习。 作为父母或老师,您不需要向幼儿展示各种猫狗,只需教他们识别猫狗。 他们可以从一些示例中学习,而无需大量解释,并且可以自行总结。 哦,他们第一次见到它们时可能会误称吉娃娃“