无监督学习算法_无监督学习

无监督学习旨在让计算机模仿人类学习能力,通过无标签数据自我学习。尽管不如监督学习准确,但它在发现数据模式、聚类、降维和异常检测方面有价值。常见的无监督学习方法包括层次聚类、K均值聚类、DBSCAN和自动编码器等。这些方法在探索性数据分析中应用广泛,有助于理解数据结构和潜在特征。
摘要由CSDN通过智能技术生成

无监督学习算法

尽管有监督的机器学习和深度学习取得了成功,但有一种观点认为无监督的学习具有更大的潜力。 监督学习系统的学习受到其培训的限制; 即,监督学习系统只能学习经过培训的任务。 相比之下,无监督系统理论上可以实现“人工通用情报”,这意味着有能力学习人类可以学习的任何任务。 但是,该技术还不存在。

如果监督学习的最大问题是标记训练数据的开销,那么无监督学习(未标记数据)的最大问题是它通常不能很好地工作。 尽管如此,无监督学习的确有其用处:它有时可以减少数据集的维数,探索数据的模式和结构,寻找相似对象的组以及检测数据中的异常值和其他噪声。

[理解机器学习的意义: 人工智能,机器学习和深度学习:您需要知道的一切 | 机器学习的解释 | 机器学习算法的解释 | 深度学习解释了 | 通过InfoWorld大数据和分析报告时事通讯深入了解分析和大数据。 ]

通常,在探索性数据分析中尝试尝试无监督学习方法以发现模式和聚类,减少数据的维数,发现潜在特征并消除异常值是值得的。 然后,您是否需要继续进行监督学习还是使用预先训练的模型进行预测取决于您的目标和数据。

什么是无监督学习?

想想人类儿童如何学习。 作为父母或老师,您不需要向幼儿展示各种猫狗,只需教他们识别猫狗。 他们可以从一些示例中学习,而无需大量解释,并且可以自行总结。 哦,他们第一次见到它们时可能会误称吉娃娃“

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值