机器学习算法 无监督学习 算法

本文介绍了无监督学习中的聚类算法,包括K-均值和二分K-均值,以及Apriori算法和FP-growth算法在关联规则挖掘中的应用。K-均值算法通过迭代寻找数据的簇,而二分K-均值解决了局部最优问题。Apriori算法用于寻找频繁项集,而FP-growth算法通过构建FP树提高效率。
摘要由CSDN通过智能技术生成

 本文介绍无监督学习算法:

- 聚类算法

- Apriori算法

- FP-growth 算法

 因时间关系,就简单介绍其原理,不涉及实例和代码

1 聚类算法

 聚类(Clustering)与分类(classification)的最大不同在于,分类的目标事先已知,而聚类不一样,因产生结果和分类相同,

只是类别没有预先定义,所以聚类也有时叫无监督分类(Unsupervised classification)

 所谓无监督学习是指事先并不知道要寻找的内容,即没有目标变量。聚类将数据点归到多个簇中,其中相似数据点处于同一簇,

而不相似数据点处于不同簇中。聚类中可以使用多种不同的方法来计算相似度。

1.1 K-均值聚类算法

 一种广泛使用的聚类算法是K-均值算法,其中K是用户指定的要创建的簇的数目。K-均值聚类算法以K个随机质心开始。算法会计算

每个点到质心的距离。每个点会被分配到距其最近的簇质心,然后紧接着基于新分配到簇的点更新簇质心。以上过程重复数次,直到簇质

心不再改变。

 优点:容易实现

 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢。

 适用数据类型:数据型数据

 实现思路:

  随机设定K个簇质心点,然后最近原则进行分类(簇),重新计算质心&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值