利用AI绘图工具制作热门美女跳舞视频,个个高清,100%原创,5天涨粉1W+

本文介绍了如何使用AI绘画工具StableDiffusion(SD)创作热门美女跳舞视频,通过逐帧重绘并保持风格一致实现原创内容。作者还探讨了AIGC技术的发展趋势和学习资源,包括工具、教程、实战案例等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是晓晓,今天给大家介绍一个爆火的项目玩法,利用AI绘画工具stable diffusion(简称SD),制作热门美女跳舞视频。有的聪明人用这种方法5天15个作品就涨粉一万+

教程看文末领取哈

制作逻辑就是,把各平台已经上了热门的美女跳舞视频,下载下来,利用SD重绘功能,把原视频逐帧重绘,这样出来的视频和原视频风格、动作一样,但实际每一帧,每个像素都不同。属于纯原创视频。

首先,SD安装包是现成的,存在了夸克网盘里,大家看文末即可直接领取。文件比较大(44G),下载完直接解压就能用,无需安装

下载解压以后,直接启动工具,界面是这样的。

这里制作图片,操作步骤需要7步。

第一步,需要分析原视频,把所有帧都分解成单个图片。

第二步,由于帧数太多,所以我们选择将原视频所有帧按每隔5帧,提取一帧的规则,提取,以便后期重绘节约时间。

第三步,图生图,将第二步提取的帧,拖入输入框,调整参数,输入提示词(具体参数和提示词,教学课程里有),生成新的AI图片。然后固定种子,批量生成。

第四步,将生成的AI图进行尺寸调整,跟原视频图片一致。

第五步,重命名关键帧,生成 .ebs 文件。

第六步,运行 Ebsynth软件。打开第五步生成的 .ebs 文件,全部运行。

第七步,合成新的视频。

写在最后

操作过程中有很多细节,用文字无法表达清楚,感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### 使用AI技术生成舞蹈视频 为了创建虚拟人物表演动画并生成AI美女跳舞视频,可以采用多种先进的AI技术和工具。以下是具体的技术路径: #### 数据准备与模型选择 对于高质量舞蹈视频的生成,首先需要选定合适的预训练模型和技术栈。基于当前的研究进展,可以选择像AI Choreographer这样的开源项目[^1]。该平台专注于音乐驱动的3D舞蹈动作合成,并且已经在大规模的数据集上进行了充分训练。 #### 动作捕捉与转换 如果希望从真人录制的动作出发,则可考虑使用MVLift这类解决方案来完成2D视频向3D动作序列的智能转变过程[^3]。这种方法允许用户输入常规拍摄得到的人物动态影像作为源素材,经过处理后输出可用于后续编辑加工的真实感三维姿态信息流。 #### 虚拟形象构建 针对想要定制专属角色外观的需求而言,在获取到了基础的身体移动模式之后,还需要借助图形学方面的专业知识来进行个性化建模工作。这一步骤涉及到皮肤材质设定、服饰搭配以及整体风格定义等多个方面的工作内容。 #### 合成最终产物 最后阶段的任务就是把之前所获得的一切资源整合起来形成完整的影片片段了。此时除了要保证画面质量外,还应该注意同步好背景音效同视觉呈现之间的关系,确保整个作品具有良好的观赏性和艺术价值。 ```python import ai_choreographer as ac from mv_lift import VideoTo3DMotionConverter import virtual_character_builder as vcb # 初始化AI编舞器实例并与指定音频文件关联 choreo = ac.AIChoreographer('path/to/music.mp3') # 加载预先训练好的网络权重参数 converter = VideoTo3DMotionConverter() motion_data = converter.convert_from_video('input_dancer.mov') # 构造自定义虚拟角色对象 character = vcb.VirtualCharacterBuilder().set_skin_texture('skin.png').add_clothing_item('dress.obj').build() # 将计算所得运动轨迹应用于目标模特身上 animated_clip = character.apply_motion(motion_data) # 导出成品至本地磁盘存储位置 animated_clip.export_as_video('output/performance.avi') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值