ComfyUI Stable Diffusion 稳定扩散

在这里插入图片描述

Stable Diffusion 简介

AIGC 绘画领域,无论是 Midjourney、SDWebUI 、DALL·E 以及 ComfyUI 都是基于 Stable Diffusion (稳定扩散)模型而开发的图像生成应用

在这里插入图片描述

Stable Diffusion 指的是一种**“文本到图像”**的人工神经网络模型,能够理解用户输入的描述并生成相应的图像。这种模型基于大量的数据进行训练,其作用是学习如何将输入的文本描述转化为图像内容。

在这里插入图片描述

2022年8月首次亮相,由德国大学的计算机视觉小组 (ComVis) 和 Runway 公司合作研发,得益于 Stability AI 公司的资助以及 LAION 的数据集支持,模型的代码与权重均已开源。

在这里插入图片描述

Stable Diffusion 原理

Stable Diffusion 模型,原名为潜扩散模型(LDM),是一种基于深度学习的扩散模型,扩散过程发生在潜在空间中,用于合成高分辨率图片,其主要工作原理是从随机噪声中直接生成图片。

在这里插入图片描述

扩散 是 Stable Diffusion 模型的最基本理论原理,一个标准扩散模型有两个主要过程:正向扩散和反向扩散

在这里插入图片描述

1、正向扩散:在正向扩散阶段,通过逐渐引入噪声来破坏图像,直到图像变成完全随机的噪声。

在这里插入图片描述

2、反向扩散:在反向扩散阶段,使用一系列马尔可夫链逐步去除预测噪声,从高斯噪声中恢复数据,最终生成一张图像。

在这里插入图片描述

对于非专业AI工程师,理解 Stable Diffusion 模型的大致概念就可以,非专业人士确实较难深入,之所以有点难理清,因为这里的模型概念指是对某一种事物的抽象表达,并非现实世界的实体产物。计算机最厉害的除了复制,还有其海量数据的存储与足够快的运算能力演化的学习能力。所以简单理解的话,模型就是经过训练学习后得到的产物(程序文件),略微了解这些概念只为之后能更好的使用 ComfyUI

在这里插入图片描述

图像生成的简单解析过程:就是用户输入一段描述后,这些信息首先会被文本编码器转化为机器可理解的形式,接着在潜在空间模型中生成相应的潜在向量,最后解码器将这些潜在向量转化为图像。

在这里插入图片描述

**应用中操作层面的生成过程:**第一步:选择一个风格合适的模型;第二步:输入画面描述的提示词;第三步:调节生成参数;第四步:点击生成,图像就被绘制出来了。

在这里插入图片描述

目前 Stability AI 官方已发布的大模型主要版本有:SD1.5、SD2.1、SDXL 1.0 以及目前最新的 SDXL Turbo 等,就像 ChatGPT 的底层就是GPT大模型,版本有熟知的3.5和4.0,不同只是一个专注于聊天,一个专注于图像。下一节我们再一起了解这些已经发布的官方模型。

在这里插入图片描述

**总结:Stable Diffusion 简称(SD)指的是一种模型,**专注于图像领域,其作用是用于图像生成、去噪、修复、着色、提高分辨率等,已发布的版本很多,还在不停迭代。

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
### 插件对于Stable Diffusion的重要性 为了增强Stable Diffusion的功能并简化工作流程,许多开发者创建了各种各样的插件。这些工具可以提供额外功能,比如改进图像质量、加速渲染过程或是增加新的艺术风格选项。 ### 推荐的Stable Diffusion插件列表 #### 1. Automatic1111 Web UI 这是一个非常受欢迎的图形界面解决方案,允许用户无需编写任何代码即可操作Stable Diffusion模型[^2]。它提供了直观的操作面板来调整参数设置,并支持多种采样算法的选择。 #### 2. ComfyUI ComfyUI 是另一个强大的Web前端应用,专为艺术家设计。该平台不仅限于简单的图片生成任务;还集成了更多高级特性,如批量处理、自定义节点编辑器等。这使得创作者能够更灵活地控制创作过程中的每一个细节。 #### 3. InvokeAI InvokeAI 提供了一个易于使用的命令行接口以及配套的网页版管理后台。除了基本的扩散模型外,此项目还包括了一些实用的小工具和服务端扩展程序,有助于提高工作效率和创造力。 #### 4. Krita Plugin for Stable Diffusion Krita是一款开源绘图软件,在其基础上开发出了专门针对Stable Diffusion的支持插件。通过这个集成方案,美术工作者可以直接在熟悉的环境中调用AI能力完成作品,而不需要切换多个应用程序之间的工作环境。 ```python # Python脚本示例:如何安装上述提到的一个Python包(仅作示范用途) !pip install comfyui ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值