AI绘画教程基础篇----1秒都不浪费!采样方法和步数的最优选择

本文比较了EULER、DPM2、DDIM、HEUN和LMS等AI绘图采样方法,发现DPM++系列在11月后因效率提升成为首选,尤其在20步内,DPM++2M表现出最快的速度。文章还探讨了AIGC技术的发展前景和学习资源,强调实践的重要性。
摘要由CSDN通过智能技术生成

省流结论:

1、EULER \EULER-a, DPM2\DPM2a DPM++系列,DDIM都是值得保留的。

2、采样步数在20-30之间,DPM++采样在20以内已经能够得到较好的结果,是比较高效率的采样。

概念:

AI绘图遵循采样步数-发散-收敛的过程,一定步数之后,结果趋于收敛 - 也就是说,随着-samples(步长)值的增加,图像看起来越来越相似,直到出现图像不再变化的点。

对于新手来说,常用的采样就有那么多:

这里面少了HEUN和LMS,这两个我并不常用。原因我放在后面。

下面我们直接上对比结果图:

在上面的结果对比种,你觉得那种方法是最好的?

可以看到,EULER\HEUN\DPM2\DDIM\LMS\PLMS这些的风格化是很相似的。

其中,HEUN、EULER、DPM_2、DDIM在大概10步左右已经产生了稳定结果。

因此,我们先行淘汰了较老的LMS\PLMS采样法。

同时。EULER-A,DPM_2得以保留,这两种方法能够带来不太一样的结果。而且EULER-A在11月之前一直还是速度最快的采样方法。

剩下的HEUN、EULER、DPM_2、DDIM四种方法之中,HEUN的采样步数比较少,但速度比较慢。 所以,我也把它淘汰了。

到了11月,中国的几名学者发布了DPM++系列的采样方法。这两种采样的效率提升很快。效果可以看下图最下面两行:

基本上,DPM++系列在16步就完成了收敛。如果选20步以内的采样,DPM++2M的方案是目前速度最快的。

一个参考数据是:

在我的3080/2080TI上,512*512,DPM++2M,20步的采样,能跑到2秒1图。

在我的3060上,512*512,DPM++2M,20步的采样,能跑到4秒1图。

这种速度,都是以前不敢想的,算是采样方法改进带来的效率提升了。

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这是一个有趣的问题,需要一些数学知识。证明的核心是使用Catalan数和矩阵乘法的关系。 首先,我们知道n个顶点的凸多边形有(n-2)!种三角剖分方法。这个结论可以通过归纳证明。当n=3时,显然只有一种方法。当n>3时,我们可以选择一个顶点,连接其它任意一个顶点形成一条边,并将多边形分成两个子多边形。这样子多边形的顶点数分别为k和n-k+1,其中k可以取1~n-2。我们可以对两个子多边形分别递归求解,最后将它们的三角剖分方法总数相乘即可得到n个顶点凸多边形的三角剖分方法数。(这里省略了证明细节) 其次,我们知道n-1个矩阵相乘也可以表示为一个递归过程。假设我们要计算A1*A2*...*An,其中Ai的维度为mi x mi+1,那么我们可以选择一个位置k,将矩阵乘积分成两部分:A1*A2*...*Ak和Ak+1*Ak+2*...*An。这两部分分别递归计算,然后将它们相乘。 现在的问题是如何将n个顶点凸多边形的三角剖分方法数与n-1个矩阵相乘的方法数联系起来。我们发现,它们都可以表示为一个递归过程,并且每次递归都可以选择一个位置分成两部分。对于n个顶点凸多边形的三角剖分方法数,我们是选择一个顶点划分成两个子多边形;对于矩阵乘法,我们是选择一个位置将矩阵乘积分成两部分。这种相似性是很自然的。 那么它们具体如何联系起来呢?我们知道Catalan数Cn=(2n)!/((n+1)!n!)表示n个节点的二叉树的数量。并且它有一个很著名的递推式Cn=C0Cn-1+C1Cn-2+...+Cn-1C0。我们可以将这个递推式稍加变形:Cn-1=C0Cn-2+C1Cn-3+...+Cn-2C0。这个式子与n个顶点凸多边形的三角剖分方法数的递归式非常相似,只需要将Catalan数换成凸多边形的三角剖分方法数即可。这是因为凸多边形的三角剖分方法数也可以看作是一些子多边形的三角剖分方法数的累计,类似于Catalan数定义中的二叉树。 现在我们只需要证明这个递推式与n-1个矩阵相乘的递推式是等价的即可。这个证明比较抽象,可以参考一些已有的文献。简单来说,就是考虑一个n个节点的二叉树,把它表示成它的根节点和左右子树组成的矩阵乘积形式,就可以将二叉树的递推式转化成矩阵乘积的递推式,从而证明它们等价。 综上所述,n个顶点凸多边形的三角剖分方法数与n-1个矩阵相乘的方法数是相同的,证毕。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值