- 博客(22)
- 收藏
- 关注
原创 链接分析与预测
然后定义了矩阵 A,它是之前定义的 Nt 矩阵和 m 矩阵的线性组合。接下来,初始化一个名为 p0 的一维数组,表示初始的状态概率分布。之后进入一个循环,在每次迭代中,计算出新的状态概率分布 pk,它是通过将 A 矩阵和当前的 p 相乘得到的。第一行 print 输出的是未归一化的介数中心性,这意味着返回的结果没有除以最大可能的介数中心性值。第二行 print 输出的是归一化的介数中心性,即介数中心性值被除以最大可能的介数中心性值,使得结果在0到1之间。三、Web中心度分析。四、Pagerank。
2024-10-18 18:12:34 266
原创 Python基础与分析实战-第一部分
1.取数,并赋值给一个变量# 2.处理重复的字段del ad_1['成交金额']# 3.处理异常值# 4.ROIad_1['ROI']=round(ad_1['GMV']/ad_1['消耗'],2)# 5.分割字符串ad_1['广告计划名称'].split('_')ad_1['商品名称']=ad_1['广告计划名称'].split('_')[0]ad_1['用户标签']=ad_1['广告计划名称'].split('_')[1]
2024-10-07 01:55:03 242
原创 SQL进阶篇-存储引擎
xxx.ibd:xxx代表的是表名,innoDB引擎的每张表都会对应这样一个表空间文件,存储该表的表结构(frm、sdi)、数据和索引。参数:innodb_file_per_table。# 第二层架构主要完成大多数的核心服务功能,如SQL接口,并完成缓存的查询,SOL的分析和优化,部分内置函数的执行。不同的存储引擎具有不同的功能,这样我们可以根据自己的需要,来选取合适的存储引擎。-- 1.连接层--服务层(SQL接口,解析器,查询优化器,缓存)--引擎层(存储引擎)--存储层(系统文件、文件和日志)
2024-09-29 19:02:31 653
原创 SQL基础篇-事务
- 解读:事务A执行select 操作 再执行update操作,事务A再执行update操作会将数据库中数据更新,这时事务B进行select操作,就去读到事务A未提交的数据,称为脏读。-- 解读:事务A进行select ,同时事务B进行update操作,且提交了,之后事务A再次进行select操作,这时事务A读取的两次记录不一样。-- 再不可重复读已经解决的情况下,事务A读不到其他事务提交的数据,但是数据已经存在,所以事务A进行select也不能查到,就出现了"幻读"# -查看事务隔离级别。
2024-09-28 23:36:12 426
原创 SQL基础篇-多表查询
insert into student values (null,'黛绮丝','1000010000'),(null,'谢逊','28160102'),(null,'般天正','2800108183'),(null,'韦一笑','2000020000');select * from emp where (job,salary) in (select job,salary from emp where name in ('鹿杖客','宋远桥')) and name not in ('鹿杖客','宋远桥');
2024-09-27 22:36:31 609
原创 SQL基础篇-约束知识点
insert into user( name, age, status, gender) values('Tom1',19,'1','男'),('Tom2',25,'0','男');INSERT into dept(id, name) VALUES(1,'研发部'),(2,'市场部'),(3,'财务部'),(4,'销售部'),(5,'总经办');(与 NO ACTION一致)------------------------------ 约束(外键) ---------------------
2024-09-25 22:03:24 446
原创 SQL基础篇-函数
(case when english>=80 then '优秀' when english>='60' then '及格' else '不及格' end) as '英语成绩评分标准',(case workaddress when '北京' then '一线城市' when '上海' then '一线城市' else '二线城市' end) as '工作地址'比如:1号员工的工号应该为00001。-- 需求:查询emp表的员工姓名和工作地址(北京/上海---一线城市,其他----二线城市)
2024-09-25 12:05:47 301
原创 SQL-基础 DML DQL DCL
(10,'10','陈友谅','男',53,'123456789012345677','上海','2011-01-01'),(7,'7','范瑶','男',40, '123456789212345670','北京','2005-05-01'),(2,'2','张无忌','男',18,'123456789012345670','北京','2005-09-01'),values (1,'1','柳岩','女',20,'123456789123456789','北京','2000-01-01'),
2024-09-23 14:23:13 813
原创 决策树建模
1.非监督式(unsupervised learning)的机器学习法-----聚类分析法(又叫集群分析(Cluster Analysis))2. 监督式(supervised learning)的机器学习法------ 决策树(Decision Tree)若树中除叶子节点外其他每个节点最多只能生长出两个分支,即 父节点只能有两个子节点,称这样的树为二叉树。若树中除叶节点外其他每个节点能 长出不止两个分支,即父节点有两个以上的子节点,则称这样的树为多叉树。
2023-06-26 14:34:46 2047 1
原创 决策树建模
1.非监督式(unsupervised learning)的机器学习法-----聚类分析法(又叫集群分析(Cluster Analysis))2. 监督式(supervised learning)的机器学习法------ 决策树(Decision Tree)若树中除叶子节点外其他每个节点最多只能生长出两个分支,即 父节点只能有两个子节点,称这样的树为二叉树。若树中除叶节点外其他每个节点能 长出不止两个分支,即父节点有两个以上的子节点,则称这样的树为多叉树。
2023-06-24 11:51:30 292
原创 关联分析中SPADE算法
而不是序列的子序列,因为前者中项2和项5是一次购买的,而后者中项2和项5是先后购买的,这就是区别所在。例如序列是序列的子序列,因为{2}包含在{1,2}中,{1,3}包含在{1,3,4}中。3.序列原子项与序列原子项之间连接:与进行连接得到、或。一个特殊的情况是,当对进行自连接时,则只能产生唯一的新序列。
2023-06-16 16:12:01 1073 1
原创 关联规则挖掘-关于板块间联动效应
1.本文介绍的关联规则的具体应用,针对目前我国的股票市场,对2022年1月4日至2023年4月28日 我国股票市场的 20个板块指数的日收盘数据进行关联规则挖掘,利用Apriori 算法分析板块之间的关联关系。2.关联规则的详细介绍和知识点请看这篇文章关联规则挖掘-知识点总结_睡觉前的博客-CSDN博客。
2023-06-13 10:08:24 441 2
原创 基于径向基的神经网络时间序列模型-matlab
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考可见基于径向基的神经网络的对股票的预测还是挺准的,CSDN中 很多文章只给测试集的预测效果,不给预测未来的数据,这篇文章也给出的未来的股票预测,不一定准确,因为股票价格受到很多因素的影响。仅作参考。
2023-06-01 23:27:45 573
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人