深度学习
zjLOVEcyj
composing code was a kind of art
展开
-
win10成功安装pycocotools
这两天安装pycocotools一直没成功,直到今天看到了曙光,记录一下。这里直接pip install pycocotools必定失败,没事往下看下载上述whl编译文件后再pip install pycocotools_windows-2.0.0.2-cp37-cp37m-win_amd64.whl下载地址 https://pypi.org/project/pycocotools-windows/#files我这里下载的是python3.7版本64位的直接successfully inst原创 2021-05-10 19:53:19 · 219 阅读 · 2 评论 -
利用谷歌的预训练模型实现目标检测object_detection_tutorial.ipynb
环境准备运行这个预训练的模型需要准备一些环境首先需要下载谷歌的models-master.zip地址在https://github.com/Master-Chen/models下载完成后我们需要的是research/objection_detection这个项目在运行这个项目之前还需要下载谷歌的protoc3.4.0下载结束后只需要将bin目录里的protoc.exe文件放在有环境变量的一个目录下即可之后在research路径下打开命令行 运行 protoc objection_de原创 2021-04-27 16:30:59 · 952 阅读 · 1 评论 -
多任务学习之验证码识别
1.生成验证码数据集这里利用captcha模块生成验证码,直接pip install captcha即可安装# 验证码生成库from captcha.image import ImageCaptcha import numpy as npimport randomimport sysimport os#验证码包含的数字 也可添加字母number = ['0','1','2','3','4','5','6','7','8','9']#返回一个包含4个随机数的列表def rando原创 2021-04-14 13:17:01 · 202 阅读 · 1 评论 -
利用google的inception3重训练自己的图像识别模型(迁移学习)
1.准备数据集准备几个类别的图像数据集存放在各自类别路径下如上图,将五个类别的图像数据分别存放在各自的文件目录,这里每个类别存放了500张.jpg图像文件,命名是0001.jpg - 0500.jpg2.下载inception_model这里需要将谷歌的inception_model文件放置在程序相同的路径下,可以从这里https://download.csdn.net/download/cyj5201314/16581511 下载model...原创 2021-04-10 14:35:02 · 469 阅读 · 1 评论 -
利用inception-v3实现各种图像识别
从 http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz下载谷歌开发的inception3网络导入要使用的包import tensorflow.compat.v1 as tfimport osimport numpy as npimport refrom PIL import Imageimport matplotlib.pyplot as pltos.environ['TF_CPP_原创 2021-04-08 22:01:33 · 393 阅读 · 0 评论 -
BP神经网络实现手写数字识别
import numpy as npfrom sklearn.datasets import load_digitsfrom sklearn.preprocessing import LabelBinarizerfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import classification_report,confusion_matriximport matplotlib.pyplot as原创 2021-03-29 11:07:47 · 933 阅读 · 0 评论 -
BP神经网络求解异或问题
import numpy as np# 输入数据X = np.array([[1,0,0], [1,0,1], [1,1,0], [1,1,1]])# 标签Y = np.array([[0], [1], [1], [0]])# 3-10-1# 取值范围-1到1V = np.random.random([3,10]) * 2 -原创 2021-03-29 10:35:38 · 513 阅读 · 0 评论 -
单层感知机
import numpy as npimport matplotlib.pyplot as plt# 定义输入数据X = np.array([[1,3,3], [1,4,3], [1,1,1], [1,2,1]])# 定义标签T = np.array([[1], [1], [-1], [-1]])# 权值初始化W = np.r原创 2021-03-28 15:47:35 · 95 阅读 · 0 评论