单层感知机

import numpy as np
import matplotlib.pyplot as plt

# 定义输入数据
X = np.array([[1,3,3],
              [1,4,3],
              [1,1,1],
              [1,2,1]])
# 定义标签
T = np.array([[1],
              [1],
              [-1],
              [-1]])
# 权值初始化
W = np.random.random([3,1])
# 学习率设置
lr = 0.1
# 神经网络输出
Y = 0
# 更新权值函数
def train():
    global X,Y,W,lr,T
    # 同时计算4个数据的预测值,Y(4,1)
    Y = np.sign(np.dot(X,W))
    # T-Y得到4个标签值与预测值的误差E(4,1)
    E = T - Y
    # 计算权值的变化
    delta_W = lr * (X.T.dot(E)) / X.shape[0]
    # 更新权值
    W = W +delta_W
# 训练模型
for i in range(100):
    # 更新权值
    train()
    # 打印当前训练次数
    print('epoch:',i+1)
    # 当前的权值
    print('weights:',W)
    # 计算当前输出
    Y = np.sign(np.dot(X,W))
    # all()表示Y中的所有值跟T中的所有值都对应相等,才为真
    if (Y == T).all():
        print('Finished')
        # 跳出循环
        break

在这里插入图片描述

# 画图
# 正样本的xy坐标
x1 = [3,4]
y1 = [3,3]
# 负样本xy坐标
x2 = [1,2]
y2 = [1,1]
# 定义分类边界线的斜率和截距
k = -W[1]/W[2]
d = -W[0]/W[2]
# 设定两个点
xdata = (0,5)
# 通过两点来确定一条直线,用红色的线来画出分界线
plt.plot(xdata,xdata*k+d,'r')
# 用蓝色的点画正样本
plt.scatter(x1,y1,c='b')
# 用黄色的点画负样本
plt.scatter(x2,y2,c='y')
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值