Python
文章平均质量分 70
thinker_1120
这个作者很懒,什么都没留下…
展开
-
Python的PIL模块.基本的图像操作
本文为参考《Python计算机视觉编程》[美]Jan Erik Solem著的学习笔记。原创 2017-09-13 12:09:11 · 1285 阅读 · 0 评论 -
Python3pandas库transform用法
import pandas as pdimport numpy as npA=np.array([[1,2,3,4,5],[2,1,1,2,2],[1,2,3,4,5],[2,1,1,2,2],[1,2,3,4,5]])data=pd.DataFrame(A,index=['li','chen','wang','zhao','qian'],columns=['a','b','c','d','e原创 2017-10-21 00:42:58 · 19495 阅读 · 0 评论 -
Python可视化库matplotlib.pyplot里contour与contourf的区别
contour和contourf都是画三维等高线图的,不同点在于contourf会对等高线间的区域进行填充,区别如下: import numpy as npimport matplotlib.pyplot as pltfrom matplotlib.colors import ListedColormapx=np.array([1,2])y=np.array([1,2])z=np原创 2017-11-12 18:59:07 · 28955 阅读 · 2 评论 -
Python科学计算库Numpy里meshgrid用法及矩阵向量合并问题
一、meshgrid的作用首先,meshgrid的作用是将两个向量进行横向纵向扩张>>> import numpy as np>>> x=np.arange(-1,3)>>> xarray([-1, 0, 1, 2])>>> y=np.array([7,8,9])>>> yarray([7, 8, 9])>>> xe,ye=np.meshgrid(x,y)>>> xe原创 2017-11-14 18:25:47 · 2785 阅读 · 0 评论 -
Python科学计算库Numpy里reshape&newaxis用法
>>> a=np.array([1,2])>>> aarray([1, 2])>>> a.reshape(1,-1)array([[1, 2]])>>> a.reshape(-1,1)array([[1], [2]])reshape一般用法是改变数组维度,比如1*4维向量变成2*2维这里reshape(1,-1)的作用是把一维向量变成二维数组;reshape(-1原创 2017-11-13 13:02:26 · 1430 阅读 · 0 评论 -
Python3的正则表达式,re模块
正则表达式可以理解为一种字符结构,在python里运用re模块,利用“正则表达式语法构造的正则表达式”对“字符串”进行操作。1.正则表达式(regular expression)描述了一种字符串匹配的模式(pattern),可以用来检查一个串是否含有某种子串、将匹配的子串替换或者从某个串中取出符合某个条件的子串等。2.构造正则表达式的方法和创建数学表达式的方法一样。也就是用多种元字符与运算符可以将小原创 2017-09-27 14:59:38 · 932 阅读 · 0 评论 -
Pandas库分析处理链家出租房(实验)
载入数据import pandas as pdlj_data = pd.read_csv('./LJdata.csv')lj_data.head(2) 规范一点,用英文的column name,这样免去了后续的一些问题(主要是编码问题)lj_data.columnsIndex(['区域', '地址', '标题', '户型', '面积', '价格', '楼层', '建造时间', '朝向', '更原创 2017-10-25 04:54:31 · 1293 阅读 · 0 评论 -
Python类的__init__()方法
类的__init__()方法Step1:面向过程def getPeri(a,b): return (a + b)*2 def getArea(a,b): return a*b #test:print(getPeri(3,4))print(getArea(3,4))Step2:假的面向对象class Rectangle_po(): def g...原创 2017-09-26 21:36:08 · 4227 阅读 · 0 评论 -
Python函数变量调用顺序及闭包
def foo1(fnum): def foo2(*args): val=fnum for i in args: val+=i snum=val def foo3(): val=snum val*=10原创 2017-09-28 16:33:11 · 1089 阅读 · 0 评论 -
Python3科学计算库numpy
把数据转换成矩阵的形式,用numpy封装函数对矩阵进行操作。 这里写链接内容example=open('drink.txt','w+') ##写一个数据文件drink.txtexample.write('Year,WHO_Region,Country,Beverage Types,Display Value\\n1986,Western Pacific,Viet Nam,Wine,0\\n1原创 2017-10-05 23:35:28 · 1107 阅读 · 0 评论 -
Win7平台下Python3第三方库whl配置
提供两个第三方库索引地址:(1.)Python官方:https://pypi.python.org/pypi(2.)美国加州大学尔湾分校某实验室:http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy 首先,安装pip:目录切换到python的安装目录下的Script文件夹下,运行 easy_install pip 接下来,原创 2017-09-05 15:40:11 · 645 阅读 · 0 评论 -
相关系数矩阵与热力图heatmap(Python高级可视化库seaborn)
相关系数矩阵通常,样本是由多维特征的构成的,把每个特征维度都看成一个随机变量,为了考查两两特征间的关系,可以借助随机变量的协方差。 协方差是对两个随机变量联合分布线性相关程度的一种度量。 cov(Xi,Xj)=E[(Xi−E(Xi))(Xj−E(Xj))]var(Xi)=E[(Xi−E(Xi))2]var(Xj)=E[(Xj−E(Xj))2]cov(Xi,Xj)=E[(Xi−E(Xi)...原创 2018-03-16 00:26:31 · 92730 阅读 · 15 评论 -
Python面向对象(一):继承,多态
函数式编程的应用场景 --> 各个函数之间是独立且无共用的数据面向对象编程-->通过类和对象封装,代码复用创建类时:class关键字,指定继承调用被封装的内容时,有两种情况:通过对象直接调用,通过self间接调用对于面向对象的继承来说,其实就是将多个类共有的方法提取到父类中,子类仅需继承父类而不必一一实现每个方法。class Animal: def eat(self): ...原创 2017-09-06 22:56:07 · 408 阅读 · 0 评论 -
Python面向对象(二):字段、方法、(属性)
静态字段在内存中只保存一份 普通字段在每个对象中都要保存一份class Company: place='America' #静态字段 def __init__(self,name): self.name=name #普通字段obj=Company('Google')print(obj.name) #直接访问普通字段print(Compa...原创 2017-10-03 22:21:41 · 1132 阅读 · 0 评论 -
Python异常处理
异常异常产生,检测到错误且解释器认为是异常,抛出异常;异常处理,截获异常,忽略或终止程序处理异常。 首先给出两个实验txt文件,内容如下: try…except…捕获指定类型的异常try: aexcept NameError as e: #捕获NameError类的异常 print('catch Error:',e)print('exec ov...原创 2018-07-15 23:04:44 · 403 阅读 · 0 评论 -
Python3pandas库DataFrame用法(基础整理)
创建一个DataFrame(1)用字典dict,字典值value是列表list(2)用Series构建DataFrame(3)用一个字典构成的列表list of dicts来构建DataFrame广播特性定位DataFrame里的元素(1)利用表达式boolean定位(2)利用loc,iloc,ix函数定位可以定位数字,就可以赋值...原创 2017-10-18 18:06:44 · 18469 阅读 · 0 评论 -
Python3pandas库Series用法(基础整理)
构造/初始化Series的3种方法:(1)用列表list构建Seriesimport pandas as pdmy_list=[7,'Beijing','19大',3.1415,-10000,'Happy']s=pd.Series(my_list)print(type(s))print(s)<class 'pandas.core.series.Series'>0 71原创 2017-10-18 02:41:03 · 28563 阅读 · 1 评论 -
Python的json模块
jsondump的功能就是把Python对象encode为json对象,一个编码过程。 注意json模块提供了json.dumps和json.dump方法,区别是dump直接到文件,而dumps到一个字符串,这里的s可以理解为string。以上给出了Python内置对象dump为json对象的操作,反过来,那如何从json对象decode解码为Python可以识别的对象呢?用loads方法,当然这个是基于string的;如果是文件,可以用json.load方法。原创 2017-09-07 10:41:10 · 8400 阅读 · 1 评论 -
Python的os模块
os模块提供了统一的操作系统接口函数,用户可以在不同操作系统下自动切换,从而实现跨平台操作。>>> import os>>> os.getcwd() 获取当前工作目录'D:\\PYTHON35\\idle\\imagetest'———————————————————原创 2017-09-13 13:59:29 · 269 阅读 · 0 评论 -
数据本身vs参考变量(指针)
对象与参考#!/usr/bin/python# Filename: reference.pyprint 'Simple Assignment'shoplist = ['apple', 'mango', 'carrot', 'banana']mylist = shoplist # mylist is just another name pointing to the sa原创 2017-09-26 20:48:33 · 351 阅读 · 0 评论 -
Python3数据分析处理库pandas
用pandas封装函数对数据进行读取,预处理,数据分析等操作。 pandas库是基于numpy库编写的, 在命令行窗口安装完numpy后,安装pandas:pip install pandas。通常需要pandas读取的数据文件的文本格式为.txt,.csv,.json pandas里定义的数据类型: (1.)object字符值(2.)int整型(3.)float浮点型(4.)datatime原创 2017-10-06 19:00:56 · 4110 阅读 · 0 评论 -
Python3文件读写打开方法
在Python里,可以把文件看成文件的对象。Python文件打开方式openPython文件读取方式read/readline/readlinesPython文件写入方式write/writelines原创 2017-10-02 19:44:13 · 2545 阅读 · 0 评论 -
Python的Matplotlib模块.基本的图像操作
#Matplotlib的相关使用from PIL import Imagefrom pylab import *#array()以数组形式读取图像im=array(Image.open('testpic.jpg').convert('L'))#imshow()根据数组绘制图像imshow(im)#x表示点的横坐标,y表示点的纵坐标x=[10,10,40,40]y原创 2017-09-13 22:16:43 · 2450 阅读 · 0 评论 -
Python统计分析库statsmodels的OLS
statsmodels库官方文档http://www.statsmodels.org/stable/,里面包含很多统计模型和相应计算结果;比较有意思的Linear Regression Models例子http://www.statsmodels.org/stable/examples/index.html#regression下面主要陈述回归常用的分析中OLS:Ordinary Least Squ原创 2017-10-27 14:35:52 · 102536 阅读 · 2 评论 -
Python可视化库matplotlib库各种图demo
关联分析、数值比较:散点图、曲线图分布分析:灰度图、密度图涉及分类的分析:柱状图、箱式图核密度估计(Kernel density estimation),是一种用于估计概率密度函数的非参数方法,采用平滑的峰值函数(“核”)来拟合观察到的数据点,从而对真实的概率分布曲线进行模拟。 https://en.wikipedia.org/wiki/Kernel_density_estimation核密原创 2017-10-27 19:41:26 · 8683 阅读 · 0 评论 -
Python可视化库matplotlib(基础整理)
绘制基本曲线使用plot函数绘制函数曲线,可以调整plot函数参数配置曲线样式、粗细、颜色、标记等设置坐标轴(1.)spines移动坐标轴(2.)xlim方法设置坐标轴刻度取值范围(3.)xticks,yticks方法设置x,y轴的刻度标签值(4.)title方法设置标题,xlabel,ylabel方法设置坐标轴描述设置图片上的描述(1.)text方法设置图片上的文字描述和注解(2.)annotat原创 2017-10-25 17:50:08 · 19118 阅读 · 2 评论 -
Python高级可视化库seaborn分布分析(基础整理)
单变量分布(1)distplot,seaborn的displot()函数集合了matplotlib的hist()与核函数估计kdeplot的功能,增加了rugplot分布观测条显示与利用scipy库fit拟合参数分布的新颖用途。 (2)kdeplot,核密度估计的步骤:每一个观测附近用一个正态分布曲线近似;叠加所有观测的正态分布曲线;归一化 bandwidth(bw参数)用于近似的正态分布曲线的原创 2017-11-01 20:43:42 · 18283 阅读 · 0 评论 -
Python高级可视化库seaborn回归分析(基础整理)
探索变量间的关系两个变量:lmplot,绘制回归模型(1.1)两个维度数据都是连续的:散点图 + 线性回归 + 95%置信区间 (1.2)一个维度数据是连续的,一个维度数据是离散的,连续轴抖动x_jitter参数 (1.3)x_estimator参数将“离散取值维度”用均值和置信区间代替散点拟合不同模型(1.1)lmplot默认参数线性拟合 (1.2)lmplot的order参数,设置高阶拟合原创 2017-11-02 01:53:10 · 13844 阅读 · 0 评论 -
Python高级可视化库seaborn分类分析(基础整理)
分类统计图(1)统计柱状图barplot(均值和置信区间) (2)灰度柱状图countplot (3)点图pointplot(均值和置信区间)分类散点图当有一维数据是分类数据时,散点图成为了条带形状: (1)航线图stripplot,设置参数添加抖动方法jitter=True(点的直接展示) (2)生成蜂群图swarmplot,避免散点重叠(点的直接展示)分类分布图(1)箱式图boxplot原创 2017-11-02 13:25:00 · 3133 阅读 · 0 评论 -
Python3pandas库DataFrame的分组,拼接,统计运算等用法(基础整理)
import pandas as pdimport numpy as npsalaries=pd.DataFrame({ 'name':['BOSS','Lilei','Lilei','Han','BOSS','BOSS','Han','BOSS'], 'Year':[2016,2016,2016,2016,2017,2017,2017,2017], 'Salary':[原创 2017-10-21 02:43:56 · 34570 阅读 · 1 评论