因果推断建模方法总结

本文主要总结常见因果推断模型方法,既包括处理二元干预的建模方法,也包括处理更复杂干预的建模方法。相关内容主要参考论文《Causal Inference with Complex Treatments: A survey》。本文内容参考公众号原文: 因果推断建模方法总结

以下内容梳理了潜在结果框架的常用算法和原理,并依据相关论文推理,结合案例做了代码实现:
因果推断与增益模型概述
因果推断建模方法总结
潜在结果框架:因果推断世界里的平行时空
Uplift Model:S-Learner类增益模型实战
Uplift Model:T-Learner类增益模型实战
Class Transformation Model增益模型
Uplift Tree Model:增益树模型原理
Uplift模型评估指标AUUC

二元干预v.s.复杂干预

二元干预,即每个受试对象只能接受或不接受某种干预。但在实际场景中,干预往往会以更加复杂的形式出现,即多值干预、连续干预、组合干预,将其统称为复杂干预。

参考下图,以病人用药场景为例,说明各种干预的表现形式:(1.)病人可以选择服用某种药物,也可以选择不服用某种药物,即单变量二元干预;(2.)病人可以从多个用药方案中选择一种方案,即单变量多值干预;(3.)病人注射药物的剂量也可以被调整,即单变量连续干预;(4.)病人可以选择同时使用多种药物,即多变量组合干预。
在这里插入图片描述
各类干预的建模方法参考下图:
在这里插入图片描述

二元干预方法

接下来,针对二元干预的各类方法给出详细解释。二元干预主要包括两大类方法:

一、基于无混淆的方法Under Unconfoundedness

【1.】基于倾向分的方法Propensity Score-based Methods:对于给定协变量,个体X接受干预T的概率。

(a.)基于倾向分-匹配的方法matching:利用倾向分设计距离矩阵和匹配算法,目标是为干预组和控制组的个体配对。[21, 98]

(b.)基于倾向分-分层的方法stratification:将全部人群,基于倾向分切分成若干异质子群体,每个子群体包含的干预组和控制组个体更相似。[86]

(c.)基于倾向分-重加权的方法re-weighting:给每个个体赋值合适的权重,进而构建一个干预组和控制组分布相似的新群体。[84]

【2.】双稳健方法Double Robust Methods:该方法也叫增强逆倾向加权方法,即通过组合倾向分回归和潜在结果预估ATE。该类方法主要是改进“基于倾向分的方法”强烈依赖于倾向分预估准确性的问题。[64]

【3.】协变量平衡方法Covariate Balancing Methods:该方法主要是为每个样本分配权重,以确保重加权的组满足平衡约束,即对齐干预组和控制组的样本协变量的一阶矩。具体地,包括熵平衡、协变量平衡倾向得分、近似剩余平衡、核平衡等方法。该类方法主要是改进“基于倾向分的方法”过于依赖所选用的模型。

【4.】树模型方法Tree-based Methods:通过树分裂将全部人群切分成若干子群体。根据查询样本同一叶节点的其他样本来估计处理效果。

【5.】基于表示的方法Representation-based Methods:该类方法主要是基于神经网络结构,包括学习干预组和控制组通用表征的网络、预估潜在结果的假设网络。损失函数主要是使干预组和控制组表征差异最小化(群体相似)、网络预估的响应误差最小化。典型的方法包括BNN、CFR等。[48, 91]

【6.】生成式模型方法Generative Modeling Methods:该类方法主要是将生成对抗网络的思想引入因果推断领域。主要包括反事实模块、ITE模块,每个模块都是一个独立的GAN结构。在反事实模块,生成器主要是补充所有确实的反事实结果,辨别器主要是判断潜在结果是来自真实可观测结果,还是生成器预估的反事实结果。

二、含未观测的混淆方法With Unobserved Confounders

【1.】代理变量方法Proxy Variable

(1.)Negative Controls

(2.)Generative Modeling Methods

【2.】工具变量方法

更多内容参考因果推断建模方法总结

复杂干预方法

多元干预的很多方法主要是在二元干预相关方法发展而来的,这里不做详细展开,仅给出各类多元干预的建模方法结构图。

多值干预
在这里插入图片描述
连续干预
在这里插入图片描述
在这里插入图片描述
组合干预
在这里插入图片描述
在这里插入图片描述

更多内容参考公众号原文: 因果推断建模方法总结

更多内容欢迎关注微信公众号:瑞行AI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值