机器学习炼丹必看——找对方向

本文探讨了如何改进机器学习模型,强调了诊断方法的重要性。介绍了评估算法、模型选择、偏差与方差分析以及正则化的概念。通过学习曲线、误差分析等方法,帮助选择合适的方向来提升模型性能。
摘要由CSDN通过智能技术生成

引言

本文旨在帮助找到改善机器学习模型的方向。
机器学习的模型算法固然重要,但参数更加是影响模型准确性的重要因素。有些人可能没有完全理解怎样运用这些算法。因此总是把时间浪费在毫无意义的尝试上。
以此在设计机器学习的系统时,选择一条最合适、最正确的道路去尝试,可以节约很多时间,不会像乱飞的苍蝇一样。

改进算法

我们以线性回归为例:
m i n θ   1 2 m   ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 + λ   ∑ j = 1 n θ j 2 min_\theta\ \dfrac{1}{2m}\ \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2 + \lambda\ \sum_{j=1}^n \theta_j^2 minθ 2m1 i=1m(hθ(x(i))y(i))2+λ j=1nθj2

当我们运用训练好了的模型来预测未知数据的时候

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值