K均值分类——一分钟学会无监督学习算法

本文介绍了K-Means算法的基本思想,包括将样本集划分为紧密簇和最大化簇间距离。讨论了K-Means的传统算法流程,并介绍了K-means++、elkan_K-means和Mini Batch K-Means等改进算法。此外,文章还探讨了确定最佳K值的方法,如拐点法、轮廓系数和间隔统计量。
摘要由CSDN通过智能技术生成

基本思想

K-Means算法就是对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。
用数学表达式就是:
假设簇划分为 ( C 1 , C 2 , . . . C k ) (C_1,C_2,...C_k) (C1,C2,...Ck)则我们的误差E就是: E = ∑ i = 1 k ∑ x ∈ C i ∣ ∣ x − μ i ∣ ∣ 2 2 E = \sum\limits_{i=1}^k\sum\limits_{x \in C_i} ||x-\mu_i||_2^2 E=i=1kxCixμi22
其中 μ i μ_i μi是簇Ci的均值向量.

在这里插入图片描述

如图,我们任意选取两个初值点为中心,计算各点到中心的距离,将他们划分到距离最近的簇。第二次循环,用各族的平均向量做为中心,继续上面操作。直到质心几乎不变。
可以证明,当中心为族的样本均值,代价函数最小,这也说明算法的合理性。

算法及改进算法

传统算法

  • 选取K
  • 从数据集D中随机选择k个样本作为初始的k个质心向量: { μ 1 , μ 2 , . . . , μ k } \{\mu_1,\mu_2,...,\mu_k\} { μ1,μ2,...,μk
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值