TensorFlow 2.0 教程学习记录(二)

本教程介绍了如何使用TensorFlow构建和训练一个神经网络模型,对FashionMNIST数据集中的服装图像进行分类。涵盖了数据预处理、模型构建(包括Flatten、Dense层)、编译、训练、评估和预测过程。模型在测试集上的准确率达到了约88%,并在多个样本上展示了预测结果。
摘要由CSDN通过智能技术生成

目录

基本分类:对服装图像进行分类

导入 Fashion MNIST 数据集

浏览数据

预处理数据

构建模型

设置层

编译模型

训练模型

向模型馈送数据

评估准确率

进行预测

验证预测结果

使用训练好的模型

基本分类:对服装图像进行分类

基本分类:对服装图像进行分类  |  TensorFlow Core

本指南将训练一个神经网络模型,对运动鞋和衬衫等服装图像进行分类。

# TensorFlow and tf.keras
import tensorflow as tf

# Helper libraries帮助库
import numpy as np
import matplotlib.pyplot as plt

print(tf.__version__)#打印出TF的版本

#输出:2.9.2

导入 Fashion MNIST 数据集

 本指南使用 Fashion MNIST 数据集,该数据集包含 10 个类别的 70,000 个灰度图像。这些图像以低分辨率(28x28 像素)展示了单件衣物,如下所示:

Fashion MNIST 旨在临时替代经典 MNIST 数据集,后者常被用作计算机视觉机器学习程序的“Hello, World”。MNIST 数据集包含手写数字(0、1、2 等)的图像,其格式与将使用的衣物图像的格式相同。

本指南使用 Fashion MNIST 来实现多样化,因为它比常规 MNIST 更具挑战性。这两个数据集都相对较小,都用于验证某个算法是否按预期工作。对于代码的测试和调试,它们都是很好的起点。

在本指南中,我们使用 60,000 张图像来训练网络,使用 10,000 张图像来评估网络学习对图像进行分类的准确程度。您可以直接从 TensorFlow 中访问 Fashion MNIST。直接从 TensorFlow 中导入和加载 Fashion MNIST 数据:

fashion_mnist = tf.keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

#导入fashion_mnist数据集,所使用60000张图像来train,10000张图像来test
#train是训练集,是模型用来学习的数据。test是测试集,用来测试的模型的准确程度的数据。

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
#   0-T恤/上衣  1-裤子  2-套头衫 3-连衣裙 4-外套 5-凉鞋 6-衬衫 7-运动鞋 8-包 9-短靴

加载数据集会返回四个 NumPy 数组:

  • train_images 和 train_labels 数组是训练集,即模型用于学习的数据。
  • 测试集test_images 和 test_labels 数组会被用来对模型进行测试。

图像是 28x28 的 NumPy 数组,像素值介于 0 到 255 之间。标签是整数数组,介于 0 到 9 之间。每个图像都会被映射到一个标签。由于数据集不包括类名称,请将它们存储在下方,供稍后绘制图像时使用。

浏览数据

在训练模型之前,我们先浏览一下数据集的格式。以下代码显示训练集中有 60,000 个图像,每个图像由 28 x 28 的像素表示:

同样,训练集中有 60,000 个标签:

每个标签都是一个 0 到 9 之间的整数:

测试集中有 10,000 个图像。同样,每个图像都由 28x28 个像素表示:

测试集包含 10,000 个图像标签:

train_images.shape#返回训练数据集的格式
#输出:(60000, 28, 28)
len(train_labels)#返回标签的长度
#输出:60000
train_labels#每个标签是0-9之间的整数,每一个整数对应了之前定义的一个服装类。
#输出:array([9, 0, 0, ..., 3, 0, 5], dtype=uint8)
test_images.shape
#输出:(10000, 28, 28)
len(test_labels)
#输出:10000

预处理数据

在训练网络之前,必须对数据进行预处理。如果您检查训练集中的第一个图像,您会看到像素值处于 0 到 255 之间:

#使用PIL读取图片
plt.figure() #新创建一个图片或者激活已经有的图片,定义一个大的图纸
plt.imshow(train_images[0])#打开训练集的第一个图片
plt.colorbar()#可以在图右边加上深浅棒
#plt.grid(False)#关闭背景的网格线
plt.grid(True)#显示背景的网格线
plt.show()#画出所有打开的图片


#将这些值缩小至 0 到 1 之间,然后将其馈送到神经网络模型。
#为此,请将这些值除以 255。请务必以相同的方式对训练集和测试集进行预处理:
train_images = train_images / 255.0
test_images = test_images / 255.0

#为了验证数据的格式是否正确,以及您是否已准备好构建和训练网络,让我们显示训练集中的前 25 个图像,并在每个图像下方显示类名称。

plt.figure(figsize=(10,10))#定义一个新的图纸,并设置图纸大小
for i in range(25):
    plt.subplot(5,5,i+1)#指定子图在图纸中的位置
    plt.xticks([])
    plt.yticks([])#设置坐标轴刻度的字体大小
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i]])#设置横轴x、纵轴y标签及大小
plt.show()

 

构建模型

构建神经网络需要先配置模型的层,然后再编译模型。

设置层

神经网络的基本组成部分是。层会从向其馈送的数据中提取表示形式。希望这些表示形式有助于解决手头上的问题。

大多数深度学习都包括将简单的层链接在一起。大多数层(如 tf.keras.layers.Dense)都具有在训练期间才会学习的参数。

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),#第一层:Flatten拉直成一维数组
    tf.keras.layers.Dense(128, activation='relu'),#第二层:密集连接或全连接层,神经元个数为128,激活函数为relu
    tf.keras.layers.Dense(10)#第三层:返回一个长度为10的logits数组。每个节点都包含一个得分,用来表示当前图像属于10个类中的哪一类。
])

该网络的第一层 tf.keras.layers.Flatten 将图像格式从二维数组(28 x 28 像素)转换成一维数组(28 x 28 = 784 像素)。将该层视为图像中未堆叠的像素行并将其排列起来。该层没有要学习的参数,它只会重新格式化数据。

展平像素后,网络会包括两个 tf.keras.layers.Dense 层的序列。它们是密集连接或全连接神经层。第一个 Dense 层有 128 个节点(或神经元)。第二个(也是最后一个)层会返回一个长度为 10 的 logits 数组。每个节点都包含一个得分,用来表示当前图像属于 10 个类中的哪一类。

编译模型

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

  • 损失函数 - 测量模型在训练期间的准确程度。你希望最小化此函数,以便将模型“引导”到正确的方向上。
  • 优化器 - 决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标 - 用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
  • model.compile(optimizer='adam',#优化器
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),#损失函数
                  metrics=['accuracy'])#指标:准确率

训练模型

训练神经网络模型需要执行以下步骤:

  1. 将训练数据馈送给模型。在本例中,训练数据位于 train_images 和 train_labels 数组中。
  2. 模型学习将图像和标签关联起来。
  3. 要求模型对测试集(在本例中为 test_images 数组)进行预测。
  4. 验证预测是否与 test_labels 数组中的标签相匹配。

向模型馈送数据

要开始训练,请调用 model.fit 方法,这样命名是因为该方法会将模型与训练数据进行“拟合”:

model.fit(train_images, train_labels, epochs=10)
#使用训练集的数据开始训练,一共迭代训练10次,依此展示损失函数和准确度

 在模型训练期间,会显示损失和准确率指标。此模型在训练数据上的准确率达到了 0.91(或 91%)左右。

评估准确率

接下来,比较模型在测试数据集上的表现:

#对test测试集进行测试,打印出测试集的准确度,并于训练集的进行对比。
test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

print('\nTest accuracy:', test_acc)
 #输出为Test accuracy:0.8795999884605408,模型在测试数据集上的准确率略低于训练数据集。

 结果表明,模型在测试数据集上的准确率略低于训练数据集。训练准确率和测试准确率之间的差距代表过拟合。过拟合是指机器学习模型在新的、以前未曾见过的输入上的表现不如在训练数据上的表现。过拟合的模型会“记住”训练数据集中的噪声和细节,从而对模型在新数据上的表现产生负面影响。

进行预测

模型经过训练后,您可以使用它对一些图像进行预测。附加一个 Softmax 层,将模型的线性输出 logits 转换成更容易理解的概率。

probability_model = tf.keras.Sequential([model, 
                     tf.keras.layers.Softmax()])

predictions = probability_model.predict(test_images)

#在上例中,模型预测了测试集中每个图像的标签。我们来看看第一个预测结果:
predictions[0]

预测结果是一个包含 10 个数字的数组。它们代表模型对 10 种不同服装中每种服装的“置信度”。您可以看到哪个标签的置信度值最大:

np.argmax(predictions[0])
#输出:9

#因此,该模型非常确信这个图像是短靴,或 class_names[9]。通过检查测试标签发现这个分类是正确的:
test_labels[0]
#输出:9

 将其绘制成图表,看看模型对于全部 10 个类的预测。

def plot_image(i, predictions_array, true_label, img): #定义函数输出预测图像
  true_label, img = true_label[i], img[i]
  plt.grid(False)
  plt.xticks([])
  plt.yticks([])

  plt.imshow(img, cmap=plt.cm.binary)

  predicted_label = np.argmax(predictions_array)
  if predicted_label == true_label:
    color = 'blue'
  else:
    color = 'red'
  #设置x坐标的标签
  plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
                                100*np.max(predictions_array),
                                class_names[true_label]),
                                color=color)

def plot_value_array(i, predictions_array, true_label): #定义函数输出预测的数组
  true_label = true_label[i]
  plt.grid(False)
  plt.xticks(range(10))
  plt.yticks([])
  thisplot = plt.bar(range(10), predictions_array, color="#777777")
  plt.ylim([0, 1])
  predicted_label = np.argmax(predictions_array)

  thisplot[predicted_label].set_color('red')
  thisplot[true_label].set_color('blue')

验证预测结果

在模型经过训练后,您可以使用它对一些图像进行预测。

我们来看看第 0 个图像、预测结果和预测数组。正确的预测标签为蓝色,错误的预测标签为红色。数字表示预测标签的百分比(总计为 100)。

#第0个图像
i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i],  test_labels)
plt.show()

#第13个图像
i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i],  test_labels)
plt.show()

 让我们用模型的预测绘制几张图像。请注意,即使置信度很高,模型也可能出错。

# Plot(绘制) the first X test images, their predicted labels, and the true labels.
# Color correct predictions in blue and incorrect predictions in red.
num_rows = 5  #5行
num_cols = 3  #3列
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))
for i in range(num_images):
  plt.subplot(num_rows, 2*num_cols, 2*i+1)
  plot_image(i, predictions[i], test_labels, test_images)
  plt.subplot(num_rows, 2*num_cols, 2*i+2)
  plot_value_array(i, predictions[i], test_labels)
plt.tight_layout()
plt.show()

使用训练好的模型

最后,使用训练好的模型对单个图像进行预测。

# Grab(抓取、采集) an image from the test dataset.
img = test_images[1]
print(img.shape)
#输出:(28, 28)

#tf.keras 模型经过了优化,可同时对一个批或一组样本进行预测。因此,即便您只使用一个图像,您也需要将其添加到列表中:
# Add the image to a batch where it's the only member.
img = (np.expand_dims(img,0))
print(img.shape)
#输出:(1,28, 28)

现在预测这个图像的正确标签:

predictions_single = probability_model.predict(img)

print(predictions_single)

plot_value_array(1, predictions_single[0], test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)
plt.show()

 

 

keras.Model.predict 会返回一组列表,每个列表对应一批数据中的每个图像。在批次中获取对我们(唯一)图像的预测:

np.argmax(predictions_single[0])

#输出:2

该模型会按照预期预测标签。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值