“傻瓜”式的使用方式是百度“All in AI”背景下强大野心的展现。PaddlePaddle有着巨大的野心,企图做国内AI框架的佼佼者,借此打造自己的AI生态,下面记录对PaddlePaddle的使用。
环境准备
前期已经做好了原生版的centos docker镜像,里面搭建了anaconda3.7环境,在此环境上安装了PaddlePaddle框架。将docker镜像打包,留待后用。
因为要使用paddlepaddle的现有模型进行Fine-tune训练,需要用到paddlepaddle的model模块,做目标检测,这个是模型的链接地址:这里
注意到
/PaddleCV/PaddleDetection
里面有docs文档目录,我们搭建PaddlePaddle环境就从阅读docs开始
模型调试
这个环节的目的是调试通PaddlePaddle的环境,使之在现有coco、voc数据集下能够进行简单demo示例的训练
1 测试PaddlePaddle环境:
import paddle.fluid as fluid
fluid.install_check.run_check()
Running Verify Fluid Program ...
Your Paddle Fluid works well on SINGLE GPU or CPU.
Your Paddle Fluid works well on MUTIPLE GPU or CPU.
Your Paddle Fluid is installed successfully! Let's start deep Learning with Paddle Fluid now
import paddle as pd
pd.__version__
'1.5.2'
2
准备自己的训练数据
将自己的图片数据转换成模型匹配的数据格式