正在复习考研,复习线代的速度很快,几个定理啪啪一整理做题刚刚的,但是介于现在在学习的Ng的“机器学习”,以及其他项目中有许多跟矩阵、线代的东西,但是都不甚清楚,所以希望对线代能有一些更直观的印象,就像公开课里长强调的Intuition,看了myan的“理解矩阵”系列http://blog.csdn.net/myan/article/details/649018也很受启发,所以把自己的一些想法记录下来。
复习到相似矩阵的概念
首先希望读者能都先看一下“理解矩阵系列”,要不看下面的内容可能不知所云。
这是myan对矩阵的一个定义:
“矩阵是线性空间中的线性变换的一个描述。在一个线性空间中,只要我们选定一组基,那么对于任何一个线性变换,都能够用一个确定的矩阵来加以描述。”
并补充到
同样的,对于一个线性变换,只要你选定一组基,那么就可以找到一个矩阵来描述这个线性变换。换一组基,就得到一个不同的矩阵。所有这些矩阵都是这同一个线性变换的描述,但又都不是线性变换本身。
所谓相似矩阵,就是同一个线性变换的不同的描述矩阵。
我从一个具体例子入手看看基的变换,坐标的变换到底是怎么一回事
通常情况下我们定义向量为列向量。
假设在一个二维空间上,最初的坐标系A建立起来了,定义了坐标轴x=(1, 0)T,y=(0, 1)T如图所示