文章目录
摘要
论文链接:https://arxiv.org/pdf/2301.01146.pdf
本文的重点是在权衡参数、FLOPs和性能的同时,为密集预测开发现代、高效、轻量级的模型。倒立残差块(IRB)是轻量级CNN的基础结构,但在基于注意力的研究中还没有相应的基础结构。本文从高效IRB和Transformer的有效组件的统一角度重新思考轻量级基础架构,将基于CNN的IRB扩展到基于注意力的模型,并抽象出一个用于轻量级模型设计的单残留元移动块(MMB)。根据简单而有效的设计准则,我们推导出了一种现代的反向残差移动块(iRMB),并构建了一个只有iRMB的类ResNet高效模型(EMO)用于下游任务。在ImageNet-1K, COCO2017和ADE20K基准测试上的大量实验证明了我们的EMO优于SOTA的方法,例如,EMO- 1m /2M/5M达到71.5,75.1和78.4 Top-1,超过了等阶CNN /基于注意力的模型,同时很好地权衡了参数,效率和精度:运行速度比iPhone14上的EdgeNeXt快2.8-4.0倍。代码是可用的。
1、介绍
随着近年来存储/计算受限应用需求的增加