EMO:重新思考高效的基于注意力的移动块模型

本文提出了一种名为EMO的新型高效模型,它基于元移动块(MMB)重新思考了基于注意力的移动块设计。通过引入倒置残差移动块(iRMB),EMO在保持轻量级的同时,融合了深度卷积和注意力机制,从而在图像分类、物体检测和语义分割等任务上展现出优于现有SOTA模型的性能。EMO在保持较低参数和FLOPs的同时,实现了与更复杂模型相当甚至更好的精度,展示了其在移动设备上的优越效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

论文链接:https://arxiv.org/pdf/2301.01146.pdf
本文的重点是在权衡参数、FLOPs和性能的同时,为密集预测开发现代、高效、轻量级的模型。倒立残差块(IRB)是轻量级CNN的基础结构,但在基于注意力的研究中还没有相应的基础结构。本文从高效IRB和Transformer的有效组件的统一角度重新思考轻量级基础架构,将基于CNN的IRB扩展到基于注意力的模型,并抽象出一个用于轻量级模型设计的单残留元移动块(MMB)。根据简单而有效的设计准则,我们推导出了一种现代的反向残差移动块(iRMB),并构建了一个只有iRMB的类ResNet高效模型(EMO)用于下游任务。在ImageNet-1K, COCO2017和ADE20K基准测试上的大量实验证明了我们的EMO优于SOTA的方法,例如,EMO- 1m /2M/5M达到71.5,75.1和78.4 Top-1,超过了等阶CNN /基于注意力的模型,同时很好地权衡了参数,效率和精度:运行速度比iPhone14上的EdgeNeXt快2.8-4.0倍。代码是可用的。

在这里插入图片描述

1、介绍

随着近年来存储/计算受限应用需求的增加࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值