python数据可视化:Matplotlib的scatter函数详解
scatter()函数参数详解:
scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs)
x,y:array_like,shape(n,)
输入数据
s:标量或array_like,shape(n,),可选
大小以点数^ 2。默认是`rcParams ['lines.markersize'] ** 2`。
c:颜色,顺序或颜色顺序,可选,默认:'b'
`c`可以是单个颜色格式的字符串,也可以是一系列颜色
规范的长度为`N`,或一系列`N`数字
使用通过kwargs指定的`cmap`和`norm`映射到颜色
(见下文)。请注意,`c`不应该是单个数字RGB或
RGBA序列,因为这与数组无法区分
值将被彩色映射。 `c`可以是一个二维数组,其中的
行是RGB或RGBA,但是,包括单个的情况
行为所有点指定相同的颜色。
marker:`〜matplotlib.markers.MarkerStyle`,可选,默认值:'o'
请参阅`〜matplotlib.markers`以获取有关不同的更多信息
标记分散支持的样式。 `marker`可以是
该类的实例或特定文本的简写
标记。
cmap:`〜matplotlib.colors.Colormap`,可选,默认:无
一个`〜matplotlib.colors.Colormap`实例或注册名称。
`cmap`仅在`c`是浮点数组时使用。如果没有,
默认为rc`image.cmap`。
norm:`〜matplotlib.colors.Normalize`,可选,默认:无
`〜matplotlib.colors.Normalize`实例用于缩放
亮度数据为0,1。`norm`只有在`c`是一个数组时才被使用
彩车。如果`None',则使用默认值:func:`normalize`。
vmin,vmax:标量,可选,默认值:无
`vmin`和`vmax`与`norm`结合使用来标准化
亮度数据。如果其中任何一个都是`无',那么最小和最大的
使用颜色数组。请注意,如果你通过一个“规范”实例,你的
`vmin`和`vmax`的设置将被忽略。
alpha:标量,可选,默认值:无
alpha混合值,介于0(透明)和1(不透明)之间,
linewidths:标量或array_like,可选,默认值:无
如果无,则默认为(lines.linewidth,)。
verts:(x,y)的序列,可选
如果`marker`为None,这些顶点将用于
构建标记。标记的中心位于
在(0,0)为标准化单位。整体标记重新调整
由``s``完成。
edgecolors :颜色或颜色顺序,可选,默认值:无
如果无,则默认为'face'
如果'face',边缘颜色将永远是相同的
脸色。
如果它是'none',补丁边界不会
被画下来。
对于未填充的标记,“edgecolors”kwarg
被忽视并被迫在内部“面对”。