【无标题】Speech Driven Talking Face Generation from a Single Image and an Emotion Condition 代码解读

思路: 

1、预先导入所需要的人脸识别模型;

2、遍历循环识别文件夹里面的图片,让模型“记住”人物的样子;

3、输入一张新的图像,与前一步文件夹里面的图片比对,返回最接近的结果

shape_predictor.dat:检测人脸的关键点,比如眼睛,嘴巴等等;

dlib_face_recognition.dat:在检测关键点的基础上,生成人脸的特征值。

使用dlib模块相当于调用某个神经网络,再把预先训练好的参数传给调用的神经网络。

OpenCV获取视频属性

import cv2
#path 视频的地址,加引号
cap=cv2.VideoCapture(path)
#get函数:参数按顺序对应下表(cap.get从0开始编号,比如为了获取视频的总帧数,在下表排第八)
frames_num=cap.get(7)
print(frames_num)

os.path.splitext()   将文件名和扩展名分开

os.path.split()       返回文件的路径和文件名

os.path.join()       路径拼接,避免使用字符串,避免斜杠写错;

numpy.moveaxis(a,source,destination)将数组的轴移动到新的位置,a:数组;source:要移动的轴的原始位置;destination:要移动的轴的目标位置

transforms用于图形变换,torchvision.transforms.Compose([ ts,ts,ts... ])ts为transforms操作,将一系列transforms操作链接起来

标准化: transforms.Normalize

torchvision.transforms.Normalize(mean, std),用平均值和标准偏差归一化张量图像。

给定mean:(M1,…,Mn)和std:(S1,…,Sn)对于n通道,此变换将标准化输入的每个通道,torch.*Tensor即 input[channel] = (input[channel] - mean[channel]) / std[channel]

mean(sequence) - 每个通道的均值序列。

std(sequence) - 每个通道的标准偏差序列。

例如:

具体地说,对每个通道而言,Normalize执行以下操作:

image = (image - mean) / std,其中mean和std分别通过(0.5,0.5,0.5)和(0.5,0.5,0.5)进行指定。原来的0-1最小值0则变成(0-0.5)/0.5=-1,而最大值1则变成(1-0.5)/0.5=1。

参考:Pytorch学习笔记(3)———transforms变换_永不言弃的小颖子的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值