级数与傅里叶级数
由数学课程可知,确定函数能展开成幂级数形式或者傅里叶级数形式。
1.幂级数
简单幂级数例子:
对于f(x),在x=0处可导,在点x=0的某一领域D内可以展开成
f
(
x
)
=
∑
n
=
0
∞
f
(
n
)
(
x
)
n
!
x
n
f(x)=\sum^{\infty}_{n=0}\frac{f^{(n)}(x)}{n!}x^n
f(x)=n=0∑∞n!f(n)(x)xn
D称为收敛域,可以通过柯西准则求出。
于是对于常见的函数
f
(
x
)
=
1
1
−
x
f(x)=\frac{1}{1-x}
f(x)=1−x1
有
f
(
x
)
=
1
+
x
+
x
2
+
x
3
+
.
.
.
+
x
n
+
.
.
.
=
∑
n
=
0
∞
x
n
\begin{aligned} f(x)&=1+x+x^2+x^3+...+x^n+...\\ &=\sum^{\infty}_{n=0}x^n \end{aligned}
f(x)=1+x+x2+x3+...+xn+...=n=0∑∞xn
收敛域
D
=
{
x
∣
∣
x
∣
<
1
}
D=\{x||x|<1\}
D={x∣∣x∣<1}
2.傅里叶级数
既然在有限区域内可以展开成幂级数,那么也非常有可能展开成三角级数(即傅里叶级数)。
答:确实可以傅里叶级数展开,但要做以下修改 :
任意函数变为周期函数、展开区域D(有限)变为( − ∞ -\infty −∞, ∞ \infty ∞),
展开成傅里叶级数条件:狄利克雷条件。
(要知道区域D上展开成傅里叶级数的条件比展成幂级数的条件宽得多)
给出展开式:
f(t)为周期函数,
ω
0
=
2
π
T
\omega_0=\frac{2\pi}{T}
ω0=T2π,
T
T
T为f(t)周期,展开式如下
f
(
t
)
=
a
0
2
+
∑
n
=
1
+
∞
a
n
c
o
s
(
n
ω
0
t
)
+
∑
n
=
1
+
∞
b
n
s
i
n
(
n
ω
0
t
)
f(t)=\frac{a_0}{2}+\sum^{+\infty}_{n=1}a_ncos(n\omega_0 t)+\sum^{+\infty}_{n=1}b_nsin(n\omega_0 t)
f(t)=2a0+n=1∑+∞ancos(nω0t)+n=1∑+∞bnsin(nω0t)
其中
a
n
=
2
T
∫
−
T
/
2
T
/
2
f
(
t
)
c
o
s
(
n
ω
0
t
)
d
t
a_n=\frac{2}{T}\int^{T/2}_{-T/2}f(t)cos(n\omega_0t)dt
an=T2∫−T/2T/2f(t)cos(nω0t)dt
b n = 2 T ∫ − T / 2 T / 2 f ( t ) s i n ( n ω 0 t ) d t b_n=\frac{2}{T}\int_{-T/2}^{T/2}f(t)sin(n\omega_0t)dt bn=T2∫−T/2T/2f(t)sin(nω0t)dt