2.级数与傅里叶级数

级数与傅里叶级数

​ 由数学课程可知,确定函数能展开成幂级数形式或者傅里叶级数形式。

1.幂级数

​ 简单幂级数例子:

​ 对于f(x),在x=0处可导,在点x=0的某一领域D内可以展开成
f ( x ) = ∑ n = 0 ∞ f ( n ) ( x ) n ! x n f(x)=\sum^{\infty}_{n=0}\frac{f^{(n)}(x)}{n!}x^n f(x)=n=0n!f(n)(x)xn
​ D称为收敛域,可以通过柯西准则求出。

​ 于是对于常见的函数
f ( x ) = 1 1 − x f(x)=\frac{1}{1-x} f(x)=1x1
​ 有
f ( x ) = 1 + x + x 2 + x 3 + . . . + x n + . . . = ∑ n = 0 ∞ x n \begin{aligned} f(x)&=1+x+x^2+x^3+...+x^n+...\\ &=\sum^{\infty}_{n=0}x^n \end{aligned} f(x)=1+x+x2+x3+...+xn+...=n=0xn
​ 收敛域
D = { x ∣ ∣ x ∣ < 1 } D=\{x||x|<1\} D={xx<1}

2.傅里叶级数

​ 既然在有限区域内可以展开成幂级数,那么也非常有可能展开成三角级数(即傅里叶级数)。

​ 答:确实可以傅里叶级数展开,但要做以下修改 :

​ 任意函数变为周期函数、展开区域D(有限)变为( − ∞ -\infty , ∞ \infty ),

​ 展开成傅里叶级数条件:狄利克雷条件。

​ (要知道区域D上展开成傅里叶级数的条件比展成幂级数的条件宽得多)


给出展开式:
f(t)为周期函数, ω 0 = 2 π T \omega_0=\frac{2\pi}{T} ω0=T2π, T T T为f(t)周期,展开式如下
f ( t ) = a 0 2 + ∑ n = 1 + ∞ a n c o s ( n ω 0 t ) + ∑ n = 1 + ∞ b n s i n ( n ω 0 t ) f(t)=\frac{a_0}{2}+\sum^{+\infty}_{n=1}a_ncos(n\omega_0 t)+\sum^{+\infty}_{n=1}b_nsin(n\omega_0 t) f(t)=2a0+n=1+ancos(nω0t)+n=1+bnsin(nω0t)
​ 其中
a n = 2 T ∫ − T / 2 T / 2 f ( t ) c o s ( n ω 0 t ) d t a_n=\frac{2}{T}\int^{T/2}_{-T/2}f(t)cos(n\omega_0t)dt an=T2T/2T/2f(t)cos(nω0t)dt

b n = 2 T ∫ − T / 2 T / 2 f ( t ) s i n ( n ω 0 t ) d t b_n=\frac{2}{T}\int_{-T/2}^{T/2}f(t)sin(n\omega_0t)dt bn=T2T/2T/2f(t)sin(nω0t)dt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

来根华子冷静下

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值