傅里叶级数

函数展开为傅里叶级数的条件
(1)函数为周期函数;

(2)在 [ − T 2 , T 2 ] [-\frac{T}{2}, \frac{T}{2}] [2T,2T]上只有有限个极值点;

(3)在 [ − T 2 , T 2 ] [-\frac{T}{2}, \frac{T}{2}] [2T,2T]上连续或只有有限个第一类间断点。


1. 傅里叶级数的三角形式

f T ( t ) = a 0 2 + ∑ n = 1 + ∞ ( a n c o s   n ω 0 t + b n s i n   n ω 0 t ) f_T (t) = \frac{a_0}{2} + \sum_{n=1}^{+\infty}(a_ncos~n\omega_0t + b_nsin~n\omega_0t) fT(t)=2a0+n=1+(ancos nω0t+bnsin nω0t)
其中
ω 0 = 2 π T \omega_0 = \frac{2\pi}{T} ω0=T2π
a n = 2 T ∫ − T 2 − T 2 f T ( t ) c o s   n ω 0 t d t ( n = 1 , 2 , ⋅ ⋅ ⋅ ) a_n = \frac{2}{T}\int_{-\frac{T}{2}}^{-\frac{T}{2}}f_T(t)cos~n\omega_0tdt(n = 1, 2, ···) an=T22T2TfT(t)cos nω0tdt(n=1,2,)
b n = 2 T ∫ − T 2 T 2 f T ( t ) s i n   n w 0 t d t ( n = 1 , 2 , ⋅ ⋅ ⋅ ) b_n = \frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f_T(t)sin~nw_0tdt(n = 1, 2, ···) bn=T22T2TfT(t)sin nw0tdt(n=1,2,)

2. 傅里叶级数的复指数表示

f T ( t ) = ∑ n = − ∞ + ∞ c n e j n ω 0 t f_T(t) = \sum_{n=-\infty}^{+\infty} c_ne^{jn\omega_0t} fT(t)=n=+cnejnω0t

其中

c n = 1 T ∫ − T 2 T 2 f T ( t ) e j n ω 0 t d t     ( n = 0 , ± 1 , ± 2 , ⋅ ⋅ ⋅ ) c_n = \frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f_T(t)e^{jn\omega_0t}dt ~~~(n = 0,\pm1,\pm2,···) cn=T12T2TfT(t)ejnω0tdt   (n=0,±1,±2,)

3. 傅立叶级数的物理意义形式

f T ( t ) = A 0 + ∑ n = 1 ∞ A n c o s ( n ω 0 t + θ n ) f_T(t)=A_0+\sum_{n=1}^{\infty}A_ncos(n\omega_0t + \theta_n) fTt=A0+n=1Ancos(nω0t+θn)
其中
A n = a n 2 + b n 2 A_n = \sqrt{a_n^2 + b_n^2} An=an2+bn2

c o s θ n = a n a n 2 + b n 2 cos\theta_n = \frac{a_n}{\sqrt{a_n^2 + b_n^2}} cosθn=an2+bn2 an

s i n θ n = − b n a n 2 + b n 2 sin\theta_n = -\frac{b_n}{\sqrt{a_n^2 + b_n^2}} sinθn=an2+bn2 bn

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值