影响摄像头移动侦测灵敏度因素

本文探讨了移动侦测在摄像头监控中的漏报与误报问题,分析了运动速度、物体大小、亮度反差、镜头前的飞虫灰尘以及自然环境变化等因素如何影响移动侦测的准确性,并强调阈值设置对灵敏度的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、漏报与误报概念
移动侦测:IPC(网络摄像头)监控过程中检测到画面中存在变动即会报警提示,是一个监控过程是在一些场景十分常见的功能。
移动侦测实际上是一个较复杂的概念,到底怎么样才算真正的移动,什么样的移动程度应该报警,实际上很模糊。同样的移动不同人、不同场景去看,有的人觉得很明显,而有的人觉得没多明显。同理IPC也无法做到绝对意义上的准确判断,算法设计上只能符合大多数人主观的感觉和习惯,因此存在一些特殊的运动场景让IPC无法判断是否触发了移动侦测,产生了不符合人主观感觉的结果。
IPC并不能区分运动的物体具体是什么,只要判定达到了算法的阈值即报警,所以对于IPC本身来说并没有误报和漏报的概念,这个概念取决于人主观判断,对于触发移动侦测的内容,我们更在意它是否对于我们有价值。如果要划分漏报和误报两类,我们根据此来划分还是比较合理的。所以现实中的影子,风吹树摇,河水波纹,飞虫等等这些,我们更希望这些不触发移动侦测;而人或者与人相关的活动(例如:车)这些物体的移动是我们希望看到的。
由于目前的移动侦测算法原理无法准确区分运动的物体到底是人还是其他东西,因此需要算法设计人员在误报与漏报取一个平衡。由于误报与漏报是一个相反的概念,一个需要提高阈值、一个需要降低阈值;在平衡漏报与误报的过程中,一般都会将阈值降低一点减少漏报,因为一般情况下用户不会在意多录几段录像,但少了录像或报警对用户影响更大。

2、实际场景中影响移动侦测因素
在实际场景使用过程中,可能受监控场景、移动物体等方面因素的影响导致漏报或误报,总结下来可以概括为:
1、运动速度过快或者过慢
因为在检测中有个VDA间隔ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值