损失函数的三种定义方法

本文介绍了神经网络中两种常用的损失函数:均方误差(MSE)和交叉熵。均方误差是通过Tensorflow实现预测的一种方法,常用于线性回归。而交叉熵损失函数则衡量了两个概率分布之间的差异,通常需要与softmax函数配合使用。
摘要由CSDN通过智能技术生成

损失函数的三种定义方式:

  1. mse:mean squared error
  2. crossentropy
  3. 自定义

均方误差法:

在这里插入图片描述

loss_mse=tf.reduce_mean(tf.square(y_-y)

tensorflow中的一个预测函数 :

tf.where(tf.greater(a,b), C ,D)
this is a simple way to realize the discription of judgement and a selected output. If a>b, the output is C. Otherwise, the output is D.

下面开始一个酸奶销量神经网络预测:
在实际生产生活过程中,假设一个成本为2元,并且利润为1。来进行预测。

import tensorflow as tf
import numpy as np

SEED = 23455
COST =2
PROFIT = 1

rdm = np.random.RandomState(SEED)
x = rdm.rand
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值