CLIP(Contrastive Language-Image Pre-training)是一种强大的多模态模型,它通过对比学习将图像和文本映射到一个共同的特征空间。小样本学习(Few-Shot Learning)是指在只有少量标注数据的情况下进行模型训练和任务适应。将CLIP与小样本学习结合,可以充分利用CLIP的跨模态表征能力,快速适应新的任务
今天就这两种技术结合clip+小样本整理出了10篇论文+开源代码,以下是精选部分论文
更多论文料可以关注:AI科技探寻,发送:111 领取更多[论文+开源码】
论文1
AMU-Tuning: Effective Logit Bias for CLIP-based Few-shot Learning
AMU-Tuning:有效的CLIP基础少样本学习的逻辑偏差
方法:
-
统一公式分析:首次从逻辑偏差的角度引入统一公式来分析基于CLIP的少样本学习方法。
-
关键组件拆解:将计算逻辑偏差的三个关键组件(即逻辑特征、逻辑预测器和逻辑融合)进行拆解,并实证分析其对少样本分类性能的影响。
-
AMU-Tuning方