Clip+小样本学习 顶会顶刊轻松发!

CLIP(Contrastive Language-Image Pre-training)是一种强大的多模态模型,它通过对比学习将图像和文本映射到一个共同的特征空间。小样本学习(Few-Shot Learning)是指在只有少量标注数据的情况下进行模型训练和任务适应。将CLIP与小样本学习结合,可以充分利用CLIP的跨模态表征能力,快速适应新的任务

今天就这两种技术结合clip+小样本整理出了10篇论文+开源代码,以下是精选部分论文

 更多论文料可以关注AI科技探寻,发送:111  领取更多[论文+开源码】 

论文1

AMU-Tuning: Effective Logit Bias for CLIP-based Few-shot Learning

AMU-Tuning:有效的CLIP基础少样本学习的逻辑偏差

方法:

  1. 统一公式分析:首次从逻辑偏差的角度引入统一公式来分析基于CLIP的少样本学习方法。

  2. 关键组件拆解:将计算逻辑偏差的三个关键组件(即逻辑特征、逻辑预测器和逻辑融合)进行拆解,并实证分析其对少样本分类性能的影响。

  3. AMU-Tuning方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值