实现语言:C++;
实现方法:DFS
问题分类:
排列问题
组合问题
集合排列
子集问题
组合:
#include<bits/stdc++.h>
using namespace std;
int n;//共计N个数
int m;//选m个数
vector<int> chosen;
string s[1000];
void calc(int x) {
if (chosen.size() > m || chosen.size() + (n - x + 1) < m) //剪枝
return;
if (x == n + 1) { //选够了m个数输出
for (int i = 0; i < chosen.size(); i++)
cout<< s[chosen[i]]<<" ";//也可以不输出,存放起来也是可以的,主要是看题目。
puts("");
return;
}
chosen.push_back(x);
calc(x + 1);
chosen.pop_back();//消除痕迹
calc(x + 1);
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>s[i];
}
calc(1);
}
排列:
#include<bits/stdc++.h>
using namespace std;
int n;
int m;
bool chosen[20];
int order[20];
void calc(int k)
{
if(k == n + 1)
{
for(int i = 1;i <= n;++ i)
cout << order[i] << " ";
puts("");
return;
}
for(int i = 1;i <= n;++ i)
{
if(chosen[i])
continue;
order[k] = i;
chosen[i] = 1;
calc(k + 1);
chosen[i] = 0;
order[k] = 0;
}
}
int main()
{
cin >> n;
calc(1);
return 0;
}
思考:
这里求解组合问题和排列问题的代码,chosen数组的类型变了,还多使用了一个order数组
为什么?
答:可以发现,递归深度的意义发生了变化
前者:考虑到第x个元素选不选
后者:第k个位置排哪个元素
前者我们需要一个chosen数组来记录谁被选了
后者,虽然使用相同的chosen数组也可以同时记录元素间的顺序,但是还需要记录元素是否被选了的信息(不可重复选择同一元素),(不同于前者的是无法通过递归深度携带是否被选了的信息),因此这里使用了order数组和chosen数组共同记录信息,完成排列求解。
应用:
#include<bits/stdc++.h>
using namespace std;
int n;//共计N个数
int m;//选m个数
vector<int> chosen;
string s[1000];
void calc(int x) {
if (chosen.size() > m || chosen.size() + (n - x + 1) < m) //剪枝
return;
if (x == n + 1) { //选够了m个数输出
for (int i = 0; i < chosen.size(); i++)
cout<< s[chosen[i]]<<" ";//也可以不输出,存放起来也是可以的,主要是看题目。
puts("");
return;
}
chosen.push_back(x);
calc(x + 1);
chosen.pop_back();//消除痕迹
calc(x + 1);
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>s[i];
}
calc(1);
return 0;
}
集合排列:
使用全排列或调用next_permutation函数
#include<bits/stdc++.h>
using namespace std;
int main()
{
string s,olds;
cin >> s;
olds = s;
sort(s.begin(),s.end());
int cnt = 0;
do{
if(s == olds){
cout << cnt << endl;
break;
}
cnt ++;
}while(next_permutation(s.begin(),s.end()));
return 0;
}
子集问题:
#include<bits/stdc++.h>
using namespace std;
int a[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14};
void print_subset(int n){
for(int i = 0;i < (1 << n);++ i)
{
for(int j = 0;j < n;++ j)
{
if(i & (1<<j)){
cout << a[j] << " ";
}
}
cout << endl;
}
}
int main()
{
int n = 3;
print_subset(n);
}