算法编程:排列与组合问题

文章介绍了在C++中使用深度优先搜索(DFS)解决组合问题和排列问题的方法,通过案例展示了如何处理选择元素和保持顺序的问题,以及如何通过order数组和chosen数组的配合处理排列问题。此外,文中还提及了如何利用全排列函数next_permutation处理集合排列问题和子集问题的示例。
摘要由CSDN通过智能技术生成

实现语言:C++;

实现方法:DFS

问题分类:

排列问题

组合问题

集合排列

子集问题

组合:


#include<bits/stdc++.h>
using namespace std;
int n;//共计N个数
int m;//选m个数
vector<int> chosen;
string s[1000];
void calc(int x) {
    if (chosen.size() > m || chosen.size() + (n - x + 1) < m) //剪枝
        return;
    if (x == n + 1) { //选够了m个数输出
        for (int i = 0; i < chosen.size(); i++)
            cout<< s[chosen[i]]<<" ";//也可以不输出,存放起来也是可以的,主要是看题目。
        puts("");
        return;
    }
    chosen.push_back(x);
    calc(x + 1);
    chosen.pop_back();//消除痕迹
    calc(x + 1);
}
int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        cin>>s[i];
    }
    calc(1);
}

排列:

#include<bits/stdc++.h>
using namespace std;
int n;
int m;
bool chosen[20];
int order[20];
void calc(int k)
{
	if(k == n + 1)
	{
		for(int i = 1;i <= n;++ i)
			cout << order[i] << " ";
	puts("");
	return;
	}
	for(int i = 1;i <= n;++ i)
	{
		if(chosen[i])
			continue;
		order[k] = i;
		chosen[i] = 1;
		calc(k + 1);
		chosen[i] = 0;
		order[k] = 0;
	}
}

int main()
{
	cin >> n;
	calc(1);
	return 0;
}

思考:

 这里求解组合问题和排列问题的代码,chosen数组的类型变了,还多使用了一个order数组

为什么?

        答:可以发现,递归深度的意义发生了变化

        前者:考虑到第x个元素选不选

        后者:第k个位置排哪个元素

前者我们需要一个chosen数组来记录谁被选了

后者,虽然使用相同的chosen数组也可以同时记录元素间的顺序,但是还需要记录元素是否被选了的信息(不可重复选择同一元素),(不同于前者的是无法通过递归深度携带是否被选了的信息),因此这里使用了order数组和chosen数组共同记录信息,完成排列求解。

应用:


#include<bits/stdc++.h>
using namespace std;
int n;//共计N个数
int m;//选m个数
vector<int> chosen;
string s[1000];
void calc(int x) {
	if (chosen.size() > m || chosen.size() + (n - x + 1) < m) //剪枝
		return;
	if (x == n + 1) { //选够了m个数输出
		for (int i = 0; i < chosen.size(); i++)
			cout<< s[chosen[i]]<<" ";//也可以不输出,存放起来也是可以的,主要是看题目。
		puts("");
		return;
	}
	chosen.push_back(x);
	calc(x + 1);
	chosen.pop_back();//消除痕迹
	calc(x + 1);
}
int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		cin>>s[i];
	}
	calc(1);
	return 0;
}

集合排列:

使用全排列或调用next_permutation函数

#include<bits/stdc++.h>
using namespace std;
int main()
{
	string s,olds;
	cin >> s;
	olds = s;
	
	sort(s.begin(),s.end());
	int cnt = 0;
	do{
		if(s == olds){
			cout << cnt << endl;
			break;
		}
		cnt ++;
	}while(next_permutation(s.begin(),s.end()));
	return 0;
}

子集问题: 

#include<bits/stdc++.h>
using namespace std;

int a[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14};
void print_subset(int n){
	
	for(int i = 0;i < (1 << n);++ i)
	{
		for(int j = 0;j < n;++ j)
		{
			if(i & (1<<j)){
				cout << a[j] << " ";
			}
		}
		cout << endl;
	}
}
int main()
{
	int n = 3;
	print_subset(n);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值