
聚类
文章平均质量分 91
云朵不吃雨
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
高光谱图像聚类的像素-超像素对比学习与伪标签校正
本文提出了一种新的高光谱图像(HSI)聚类方法,名为像素-超像素对比学习与伪标签校正(PSCPC)。该方法结合了像素级和超像素级的对比学习,通过超像素捕获领域特定的细粒度特征,并在超像素内部对少量像素进行比较学习。PSCPC通过一个伪标签校正模块来对齐像素级和超像素级的聚类伪标签,使用像素级聚类结果来指导超像素级聚类,从而提高模型的泛化能力。原创 2024-06-08 14:52:14 · 1369 阅读 · 0 评论 -
对比深度图聚类的硬样本感知网络
本文提出了一种名为Hard Sample Aware Network (HSAN)的新方法,用于对比深度图聚类。HSAN通过引入全面相似性度量标准和动态样本加权策略,解决了现有硬样本挖掘方法中结构信息缺失和忽视硬正样本对的问题。HSAN不仅挖掘硬负样本,还挖掘硬正样本,以提高样本的区分能力。论文链接开源代码。原创 2024-06-08 13:48:37 · 1047 阅读 · 0 评论 -
用于认知负荷评估的集成时空深度聚类(ISTDC)
本文提出了一种新型的集成时空深度聚类(ISTDC)模型,用于评估认知负荷。该模型首先利用深度表示学习(DRL)将高维EEG数据转换到低维特征空间,然后应用变分贝叶斯高斯混合模型(VBGMM)进行聚类分析。ISTDC模型通过四个算法实现,包括时间-空间变分自编码器(VAE)和多模态集成,有效地从EEG信号中提取时间与空间的潜在特征。在i-back任务中,所提出的模型在0-back与2-back任务对比中达到了98.0%的最大平均聚类准确率,相较于现有方法有显著提升。原创 2024-06-08 13:13:27 · 1128 阅读 · 0 评论