深度学习基础模型之Mamba

Mamba模型通过结合线性层、门控和选择性结构化状态空间模型,解决了Transformer在长序列处理中的效率问题。其核心是选择性机制,能有效压缩和过滤上下文信息。硬件算法通过扫描而非卷积,显著提高了计算速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mamba模型简介


问题:许多亚二次时间架构(运行时间复杂度低于O(n^2),但高于O(n)的情况)(例如线性注意力、门控卷积和循环模型以及结构化状态空间模型(SSM))已被开发出来,以解决 Transformer 在长序列上的计算效率低下问题,但此类模型的一个关键弱点是它们无法执行基于内容的推理

1. 模型架构

模型简单理解(特殊的门控RNN网络):线性层+门控+选择性SSM的组合

在这里插入图片描述

2. 模型特点

2.1 选择性机制

在这里插入图片描述

Δ \Delta Δ 、A、B、C应该是SSM中的可学习参数

  • 根据输入参数化 SSM 参数来设计一种简单的选择机制,这使得模型能够过滤掉不相关的信息并无限期地记住相关信息。
    这里作者认为(研究动机):‘序列建模的一个基本问题是将上下文压缩成更小的状态。事实上,我们可以从这个角度来看待流行序列模型的权衡。例如,注意力既有效又低效,因为它明确地根本不压缩上下文。自回归推理需要显式存储整个上下文(即KV缓存),这直接导致Transformers的线性时间推理和二次时间训练缓慢。’
    在这里插入图片描述
  • 序列模型的效率与有效性权衡的特征在于它们压缩状态的程度:高效模型必须具有较小的状态,而有效模型必须具有包含上下文中所有必要信息的状态。反过来,我们提出构建序列模型的基本原则是选择性:或关注或过滤掉序列状态输入的上下文感知能力。

2.2 硬件算法

算法通过扫描而不是卷积来循环计算模型,但不会具体化扩展状态,计算速度比所有先前的 SSM 模型提升三倍。

代码调用

import torch
from mamba_ssm import Mamba

batch, length, dim = 2, 64, 16
x = torch.randn(batch, length, dim).to("cuda")
model = Mamba(
    # This module uses roughly 3 * expand * d_model^2 parameters
    d_model=dim, # Model dimension d_model
    d_state=16,  # SSM state expansion factor
    d_conv=4,    # Local convolution width
    expand=2,    # Block expansion factor
).to("cuda")
y = model(x)
print(x.shape)
print(y.shape)
assert y.shape == x.shape

总结

这项基础性模型研究旨在解决transformer模型的长序列数据计算效率低的问题,其解决方法的动机:利用选择性机制实现有效特征的提取。个人理解为通过有效特征信息的选择实现知识提取(信息压缩),这让我联想到,最初的VGG语义分割网络结构设计其实类似于模拟知识特征的压缩与抽取,但后来发现这种方式会损失边缘信息,因此提出了U-net架构,再进一步卷积的方式无法有效估计全局上下文信息的联系,进而提出注意力机制来解决这一问题。
从技术与文章写作的角度来看,问题的发展似乎从知识压缩->细节特征提取->全局信息整合,到Mamba貌似是在全局信息整合基础上在进行一次有效信息的抽取,进而使模型从数据中提取根据代表性的特征。整体突出一点:深度学习也是一个特征工程,利用模型来替换原有的手工设计的特征

### Mamba 模型学习路径 #### 一、基础知识准备 为了更好地理解Mamba模型,建议先掌握一些基础概念和技术。这些预备知识包括但不限于机器学习的基础理论、深度学习框架的应用以及状态空间模型(SSM)的相关原理。 - **机器学习与深度学习** - 掌握基本的监督学习算法如线性回归和支持向量机。 - 熟悉神经网络结构及其训练过程中的反向传播机制。 - **编程技能** - Python 编程语言是必不可少的选择之一,因为大多数现代AI库都支持Python接口。 - 使用PyTorch 或 TensorFlow 进行实验开发的能力也非常重要[^2]。 ```python import torch from torchvision import datasets, transforms transform=transforms.Compose([transforms.ToTensor()]) trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) for images, labels in trainloader: print(images.shape) ``` #### 二、深入了解状态空间模型(SSM) 由于Mamba借鉴了LSTM门控的思想应用于改进传统SSM,因此需要特别关注这类模型的特点: - 学习如何构建简单的线性和非线性的状态方程组表示动态系统的演化规律; - 探讨卡尔曼滤波器作为解决高斯噪声下估计问题的经典方法; - 关注近年来提出的变分推理技术用于近似贝叶斯推断,在处理复杂分布时尤为有效[^3]。 #### 三、研究Mamba的具体实现细节 当具备上述背景之后,则可转向具体分析Mamba是如何通过引入时间依赖关系来增强原有SSM的表现力: - 阅读原始论文以获取最权威的第一手资料; - 参考开源社区提供的代码仓库,尝试动手实践并调试官方给出的例子程序; #### 四、持续跟进最新进展 最后但同样重要的是保持对该领域前沿成果的关注度,积极参与讨论交流活动,不断更新自己的认知体系以便及时吸收新知。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云朵不吃雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值