代码注释:机器学习实战第8章 预测数值型数据:回归

本文为《机器学习实战》一书中第8章关于预测数值型数据——回归的代码提供了详细的注释,旨在帮助初学者理解并掌握回归模型的实现。内容包括各种回归算法的Python代码实现及解释。
摘要由CSDN通过智能技术生成

写在开头的话:在学习《机器学习实战》的过程中发现书中很多代码并没有注释,这对新入门的同学是一个挑战,特此贴出我对代码做出的注释,仅供参考,欢迎指正。

#coding:gbk
from numpy import *

#作用:从文件中导入数据
#输入:文件名
#输出:数据矩阵,标签向量
def loadDataSet(fileName):
    # .readline()每次只读取一行,只需读取一行计算特征值洁身内存
    numFeat = len(open(fileName).readline().split('\t')) - 1
    dataMat = []
    labelMat = []
    fr = open(fileName)
    #.readlines()一次读取整个文件,自动将文件内容分析成一个行的列表
    for line in fr.readlines():
        lineArr = []
        curLine = line.strip().split('\t')
        for i in range(numFeat):
            lineArr.append(float(curLine[i]))
        dataMat.append(lineArr)
        labelMat.append(float(curLine[-1]))
    return dataMat, labelMat

#作用:计算最佳拟合直线
#输入:数据点的x向量,y向量
#输出:最佳拟合直线的回归系数向量
def standRegres(xArr, yArr):
    xMat = mat(xArr)
    yMat &
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值