浅谈二叉查找树、AVL树、红黑树、B树、B+树的原理及应用

一、二叉查找树

1、简介

二叉查找树也称为有序二叉查找树,满足二叉查找树的一般性质,是指一棵空树具有如下性质:

  • 任意节点左子树不为空,则左子树的值均小于根节点的值.
  • 任意节点右子树不为空,则右子树的值均大于于根节点的值.
  • 任意节点的左右子树也分别是二叉查找树.
  • 没有键值相等的节点.
2、局限性及应用

一个二叉查找树是由n个节点随机构成,所以,对于某些情况,二叉查找树会退化成一个有n个节点的线性链.如下图:
这里写图片描述
b图为一个普通的二叉查找树,大家看a图,如果我们的根节点选择是最小或者最大的数,那么二叉查找树就完全退化成了线性结构,因此,在二叉查找树的基础上,又出现了AVL树,红黑树,它们两个都是基于二叉查找树,只是在二叉查找树的基础上又对其做了限制.

二、AVL树

1、简介

AVL树是带有平衡条件的二叉查找树,一般是用平衡因子差值判断是否平衡并通过旋转来实现平衡,左右子树树高不超过1,和红黑树相比,它是严格的平衡二叉树,平衡条件必须满足(所有节点的左右子树高度差不超过1).不管我们是执行插入还是删除操作,只要不满足上面的条件,就要通过旋转来保持平衡,而旋转是非常耗时的,由此我们可以知道AVL树适合用于插入删除次数比较少,但查找多的情况。
这里写图片描述
从上面这张图我们可以看出,任意节点的左右子树的平衡因子差值都不会大于1.

2、局限性

由于维护这种高度平衡所付出的代价比从中获得的效率收益还大,故而实际的应用不多,更多的地方是用追求局部而不是非常严格整体平衡的红黑树.当然,如果应用场景中对插入删除不频繁,只是对查找要求较高,那么AVL还是较优于红黑树.

3、应用

Windows NT内核中广泛存在.。

三、红黑树

1、简介

一种二叉查找树,但在每个节点增加一个存储位表示节点的颜色,可以是red或black. 通过对任何一条从根到叶子的路径上各个节点着色的方式的限制,红黑树确保没有一条路径会比其它路径长出两倍.它是一种弱平衡二叉树(由于是若平衡,可以推出,相同的节点情况下,AVL树的高度低于红黑树),相对于要求严格的AVL树来说,它的旋转次数变少,所以对于搜索,插入,删除操作多的情况下,我们就用红黑树.

2、性质
  • 每个节点非红即黑.
  • 根节点是黑的。
  • 每个叶节点(叶节点即树尾端NUL指针或NULL节点)都是黑的.
  • 如果一个节点是红的,那么它的两儿子都是黑的.
  • 对于任意节点而言,其到叶子点树NIL指针的每条路径都包含相同数目的黑节点.
    这里写图片描述
    每条路径都包含相同的黑节点.
3、应用
  • 广泛用于C++的STL中,map和set都是用红黑树实现的.
  • 著名的linux进程调度Completely Fair Scheduler,用红黑树管理进程控制块,进程的虚拟内存区域都存储在一颗红黑树上,每个虚拟地址区域都对应红黑树的一个节点,左指针指向相邻的地址虚拟存储区域,右指针指向相邻的高地址虚拟地址空间.
  • IO多路复用epoll的实现采用红黑树组织管理sockfd,以支持快速的增删改查.
  • ngnix中,用红黑树管理timer,因为红黑树是有序的,可以很快的得到距离当前最小的定时器.
  • java中TreeMap的实现.

四、B/B+树

注意B-树就是B树,-只是一个符号.

1、简介

B/B+树是为了磁盘或其它存储设备而设计的一种平衡多路查找树(相对于二叉,B树每个内节点有多个分支),与红黑树相比,在相同的的节点的情况下,一颗B/B+树的高度远远小于红黑树的高度(在下面B/B+树的性能分析中会提到).B/B+树上操作的时间通常由存取磁盘的时间和CPU计算时间这两部分构成,而CPU的速度非常快,所以B树的操作效率取决于访问磁盘的次数,关键字总数相同的情况下B树的高度越小,磁盘I/O所花的时间越少.

2、B树的性质
  • 定义任意非叶子结点最多只有M个儿子;且M>2;
  • 根结点的儿子数为[2, M];
  • 除根结点以外的非叶子结点的儿子数为[M/2, M];
  • 每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
  • 非叶子结点的关键字个数=指向儿子的指针个数-1;
  • 非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
  • 非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
  • 所有叶子结点位于同一层;
    这里写图片描述
    这里只是一个简单的B树,在实际中B树节点中关键字很多的.上面的图中比如35节点,35代表一个key(索引),而小黑块代表的是这个key所指向的内容在内存中实际的存储位置.是一个指针.
3、B+树

B+树是应文件系统所需而产生的一种B树的变形树(文件的目录一级一级索引,只有最底层的叶子节点(文件)保存数据.),非叶子节点只保存索引,不保存实际的数据,数据都保存在叶子节点中.这不就是文件系统文件的查找吗?我们就举个文件查找的例子:有3个文件夹,a,b,c, a包含b,b包含c,一个文件yang.c, a,b,c就是索引(存储在非叶子节点), a,b,c只是要找到的yang.c的key,而实际的数据yang.c存储在叶子节点上.
所有的非叶子节点都可以看成索引部分

B+树的性质(下面提到的都是和B树不相同的性质)
  • 非叶子节点的子树指针与关键字个数相同;
  • 非叶子节点的子树指针p[i],指向关键字值属于[k[i],k[i+1]]的子树.(B树是开区间,也就是说B树不允许关键字重复,B+树允许重复);
  • 为所有叶子节点增加一个链指针.
  • 所有关键字都在叶子节点出现(稠密索引). (且链表中的关键字恰好是有序的);
  • 非叶子节点相当于是叶子节点的索引(稀疏索引),叶子节点相当于是存储(关键字)数据的数据层.
  • 更适合于文件系统;
    看下图:
    这里写图片描述
    非叶子节点(比如5,28,65)只是一个key(索引),实际的数据存在叶子节点上(5,8,9)才是真正的数据或指向真实数据的指针.
4、应用  

B和B+树主要用在文件系统以及数据库做索引.比如Mysql;

5、B/B+树性能分析 
  • n个节点的平衡二叉树的高度为H(即logn),而n个节点的B/B+树的高度为logt((n+1)/2)+1;   
  • 若要作为内存中的查找表,B树却不一定比平衡二叉树好,尤其当m较大时更是如此.因为查找操作CPU的时间在B-树上是O(mlogtn)=O(lgn(m/lgt)),而m/lgt>1;所以m较大时O(mlogtn)比平衡二叉树的操作时间大得多. 因此在内存中使用B树必须取较小的m.(通常取最小值m=3,此时B-树中每个内部结点可以有2或3个孩子,这种3阶的B-树称为2-3树)。
6、为什么说B+tree比B树更适合实际应用中操作系统的文件索引和数据索引.  


  • B+-tree的内部节点并没有指向关键字具体信息的指针,因此其内部节点相对B树更小,如果把所有同一内部节点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多,一次性读入内存的需要查找的关键字也就越多,相对IO读写次数就降低了.
  • 由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。
    ps:我在知乎上看到有人是这样说的,我感觉说的也挺有道理的:
    他们认为数据库索引采用B+树的主要原因是:B树在提高了IO性能的同时并没有解决元素遍历的我效率低下的问题,正是为了解决这个问题,B+树应用而生.B+树只需要去遍历叶子节点就可以实现整棵树的遍历.而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作(或者说效率太低).  



转自: https://blog.csdn.net/whoamiyang/article/details/51926985

  • 2
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
AVL是一种自平衡二查找,它的每个节点都保存了一个平衡因子(balance factor),用于判断是否需要进行旋转操作来保持的平衡。AVL的平衡因子可以是-1、0或1,当插入或删除节点后,如果某个节点的平衡因子的绝对值大于1,则需要进行旋转操作来保持的平衡。AVL查找、插入和删除操作的时间复杂度都是O(log n)。 以下是一个简单的Python实现AVL的例子: ```python class AVLNode: def __init__(self, key): self.key = key self.left = None self.right = None self.height = 1 class AVLTree: def __init__(self): self.root = None def insert(self, key): self.root = self._insert(self.root, key) def _insert(self, node, key): if not node: return AVLNode(key) elif key < node.key: node.left = self._insert(node.left, key) else: node.right = self._insert(node.right, key) node.height = 1 + max(self._height(node.left), self._height(node.right)) balance = self._balance(node) if balance > 1 and key < node.left.key: return self._right_rotate(node) if balance < -1 and key > node.right.key: return self._left_rotate(node) if balance > 1 and key > node.left.key: node.left = self._left_rotate(node.left) return self._right_rotate(node) if balance < -1 and key < node.right.key: node.right = self._right_rotate(node.right) return self._left_rotate(node) return node def delete(self, key): self.root = self._delete(self.root, key) def _delete(self, node, key): if not node: return node elif key < node.key: node.left = self._delete(node.left, key) elif key > node.key: node.right = self._delete(node.right, key) else: if not node.left and not node.right: node = None elif not node.left: node = node.right elif not node.right: node = node.left else: temp = self._get_min(node.right) node.key = temp.key node.right = self._delete(node.right, temp.key) if not node: return node node.height = 1 + max(self._height(node.left), self._height(node.right)) balance = self._balance(node) if balance > 1 and self._balance(node.left) >= 0: return self._right_rotate(node) if balance < -1 and self._balance(node.right) <= 0: return self._left_rotate(node) if balance > 1 and self._balance(node.left) < 0: node.left = self._left_rotate(node.left) return self._right_rotate(node) if balance < -1 and self._balance(node.right) > 0: node.right = self._right_rotate(node.right) return self._left_rotate(node) return node def _height(self, node): if not node: return 0 return node.height def _balance(self, node): if not node: return 0 return self._height(node.left) - self._height(node.right) def _left_rotate(self, node): new_root = node.right node.right = new_root.left new_root.left = node node.height = 1 + max(self._height(node.left), self._height(node.right)) new_root.height = 1 + max(self._height(new_root.left), self._height(new_root.right)) return new_root def _right_rotate(self, node): new_root = node.left node.left = new_root.right new_root.right = node node.height = 1 + max(self._height(node.left), self._height(node.right)) new_root.height = 1 + max(self._height(new_root.left), self._height(new_root.right)) return new_root def _get_min(self, node): if not node.left: return node return self._get_min(node.left) def inorder_traversal(self): self._inorder_traversal(self.root) def _inorder_traversal(self, node): if node: self._inorder_traversal(node.left) print(node.key) self._inorder_traversal(node.right) tree = AVLTree() tree.insert(10) tree.insert(20) tree.insert(30) tree.insert(40) tree.insert(50) tree.insert(25) tree.delete(30) tree.inorder_traversal() ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值