判定二分图——染色法
基本思路:
默认将未染色的点染为1,然后进行dfs或bfs,如果与该点相连的点没染色,那么将他染为相反颜色,并进行dfs;若该点染色了:颜色和父点相同,则不是二分图,返回false。
#include <bits/stdc++.h>
using namespace std;
const int N = 2 * 1e5 + 10;
int h[N], e[N], ne[N], idx;
int n, m;
int color[N];
void add(int a, int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
bool dfs(int x, int c)
{
color[x] = c;
for(int i = h[x]; i != -1; i = ne[i])
{
int j = e[i];
if(!color[j])
{
if(!dfs(j, 3 - c)) return false;
}
else if(color[j] == c) return false;
}
return true;
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof h);
while(m --)
{
int a, b;
cin >> a >> b;
add(a, b), add(b, a);
}
bool flag = true;
for(int i = 1; i <= n; i ++)
if(!color[i])
{
if(!dfs(i, 1))
{
flag = false;
break;
}
}
if(flag) cout << "Yes" << endl;
else cout << "No" << endl;
}
寻找二分图的最大匹配——匈牙利算法
二分图的匹配:给定一个二分图 G,在 G 的一个子图 M 中,M 的边集 {E} 中的任意两条边都不依附于同一个顶点,则称 M是一个匹配。
二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。
基本思路:
只遍历男生,如果可以直接配对女生,直接配对;如果中意的女生已经有了对象,则看看该女生的对象能否找其他女生,如果可以,该女生和当前男生配对,该女生的前对象找其他女生,如果不可以,则返回false。
#include<iostream>
#include<cstring>
using namespace std;
const int N = 510 , M = 100010;
int n1,n2,m;
int h[N],ne[M],e[M],idx;
bool st[N];
int match[N];
void add(int a , int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
void init()
{
memset(h,-1,sizeof h);
}
int find(int x)
{
//遍历自己喜欢的女孩
for(int i = h[x] ; i != -1 ;i = ne[i])
{
int j = e[i];
if(!st[j])//如果在这一轮模拟匹配中,这个女孩尚未被预定
{
st[j] = true;//那x就预定这个女孩了
//如果女孩j没有男朋友,或者她原来的男朋友能够预定其它喜欢的女孩。配对成功
if(!match[j]||find(match[j]))
{
match[j] = x;
return true;
}
}
}
//自己中意的全部都被预定了。配对失败。
return false;
}
int main()
{
init();
cin>>n1>>n2>>m;
while(m--)
{
int a,b;
cin>>a>>b;
add(a,b);
}
int res = 0;
for(int i = 1; i <= n1 ;i ++)
{
//因为每次模拟匹配的预定情况都是不一样的所以每轮模拟都要初始化
memset(st,false,sizeof st);
if(find(i))
res++;
}
cout<<res<<endl;
}