谈谈本人对计算流体力学中y+的理解,欢迎批评指正!
思考几个问题:
1. Q:什么时候需要考虑y+?
A:粘性计算(求解N-S方程)才涉及y+,无粘计算(求解Euler方程)不考虑边界层,不涉及y+的讨论
2.Q:为什么需要考虑y+?(理论基础)
A:粘性计算时,壁面附近是流场中可以预先知道的高梯度区域,即边界层区域。即使边界层不是流场中速度梯度最大的区域,但至少是已知的大速度梯度区域。因此,应当预先考虑:需要用多少个网格,才能分辨出边界层呢?
要回答这个问题,不仅需要预估边界层厚度,还需要大致了解边界层内的速度分布规律。
冯·卡门在普朗特混合长度理论的基础上,用量纲分析的方法推导出了对数律(log law),后续的理论与实验研究,界定了对数律的成立范围,并进一步将边界层细分为4个区域:粘性(线性)底层、缓冲区、对数律区,外层,如下图:

由上图可知,在对数坐标系下,两个区域具有解析的函数关系式。分别是:
粘性(线性)底层:惯性力相对粘性力较小,粘性力与速度梯度呈线性关系。
对数率层:无量纲速度与无量纲壁面距离
呈对数关系,即卡门对数律。
可以利用这两个特殊区域中的关系,建立所谓Wall function,替代解析求解边界层内流动的过程。这样做的优势是,允许我们用更大的壁面第一层网格,来捕捉(毫米,微米量级的)边界层。极大的减少壁面法向的网格数量,避免了壁面处网格长宽比(aspect ratio)过大造成的数值误差和数值不稳定,化解了网格数和网格质量的矛盾。
作为区分边界层内部结构的特征参数,在网格划分时需要重点关注。
3. Q:求解中如何利用wall function?
A:首先需要明确的是,流动并不一定具有如上的边界层结构。
对于低雷诺数流动(Low-Re):
边界层较厚,主流和边界层的掺混,会使得对数律区的范围很小,可以认为没有对数律区的存在,不存在Lindgren图中所示的内部结构。此外,对于分离流动,一样不存在对数律区,如,存在分离的翼型、叶轮机内的流动等。这时候,对数律区的logarithmic function不能使用,因此,必须将壁面第一层网格,划分到粘性底层,对应的
,并且能接近于1(这里的
是壁面第一层网格的无量纲壁面距离)。此方案,称为低雷诺方案(Low-Re mothod)。
对于高雷诺数流动(High-Re):
边界层较薄,存在Lindgren图中所示的内部结构,也存在对数律区。这时候,既可以把壁面第一层网格划分到粘性底层,使得,即,采用低雷诺数方案;也可将其划分到对数律区域,使得
,利用对数律wall function接近,即,采用高雷诺数方案(High-Re mothod)。
需要说明的是:这里的所谓高低雷诺数,并非以过流装置的尺寸和平均流速为特征参数计算得到的装置雷诺数(device Reynolds number),而是以壁面局部区域,边界层发展长度和壁面附近自由流为特征参数,计算得到的局部的湍流雷诺数(turbulence Reynolds number)。
因此,对于高雷诺数下的设备,也有可能必须采用低雷诺数方案(Low-Re mothod),如存在分离的叶轮机内的流动。并且,即使是局部雷诺数依然很大的请况,一样可以采用Low-Re mothod解析到粘性底层,只是耗费了更多网格而已。
总结一下:
当时,我们认为PDE的求解已经数值积分到壁面,边界层被完整求解。
当时(一般在此区间,取决于具体流动类型的buffer layer),壁面第一层网格落在log law layer,此时我们在求解过程中引入壁面函数wall function来近似求解第一层网格上的速度,此时,PDE的求解没有积分到壁面。
当或
时,不被允许用这样的网格求解含边界层的流动。
注:工程计算中认为粘性底层的边界是,理论研究计算中认为
4. Q:怎样确定y+的?(壁面第一层网格和y+的关系)
A: 是考虑了第一层网格厚度
和具体流动特征参数的无量纲壁面距离,表征了第一层网格在Lindgren图边界层分区结构中的位置。
正问题求:
根据已知流场和壁面第一层网格的厚度,可以直接求解
,公式如下:
其中是壁面摩擦速度(friction velocity):
反问题预估:
由于流场也未知,因此,预估壁面第一层网格比较难。
一种方法是,通过Blasius 方程的截断级数解,给出
推荐网站,yplus计算工具:
http://www.pointwise.com/yplus/
https://www.cfd-online.com/Tools/yplus.php
一些网格绘制的建议:
-
湍流模型与y+的匹配
低雷诺数模型(如k-w模型,SA模型等),需要满足,
最佳
高雷诺数模型(如k-Epsilon模型、雷诺应力模型等),需要满足,
最佳
自带壁面函数型模型(如SST,RNG模型),需要满足,
最佳
大分离流动相关模型(LES,DES,SAS),趋向正方型网格最佳
另外,所有的模型均可以强行添加wall function,添加wall function后原则上,需要满足,
最佳
-
在商用软件中y+重要么
需要说明的是,很多商用软件,可以实现自动壁面处理,可以适应于任意精细的网格,如CFX中的scalable wall function,自动壁面处理可以实现(Low-Re mothod)和(High-Re mothod)的光滑切换,因此对不必严苛要求。
尽管如此,仍然建议,采用Low-Re mothod时将第一层网格画到,采用High-Re mothod时画到
。因为,本人在做网格无关性检验时发现,网格数保持不变,仅改变壁面第一层网格从
(很少的局部区域大于10)到
,流动参数的定量影响仍相当可观(离心叶轮,效率变化约0.5个百分点)。
究竟重要不重要?
取决于你信任不信任商用软件的自动处理算法;
取决于你关注的流动,边界层是否存在重要的影响;
取决于你是定性研究还是定量研究。
涉及定量的对比,比如网格无关性验证时,还是很重要的。本人建议,在保证壁面第一层网格
不变的情况下验证网格无关性,尤其是要避免网格加密后
增大这样情况的出现,否则,无法验证网格无关性。(关于此,欢迎讨论)
参考文献:
[2]Ansys cfx user manual
[3]Numeca user manual
[4]边界层对数律的推导