关于日本工业界内多重性调整与样本量计算实践的调查

调查背景

研究药物的用量和反应的关系或选择最佳用药剂量,常用multi-arms clinical trials。包括探索性试验(exploratory trial )和验证性试验(confirmatory trial)。而在multi-arms clinical trials的设计阶段,  通常需要考虑到多重性分析的必要性。The International Conference on Harmonisation

(ICH)E9 和CPMP(Committee for Proprietary Medicinal Products)都声明验证性试验中考虑多重性调整的必要性。另外,样本量的设计也是值得关注的问题。但在multi-arms clinical trails中样本量的计算取决于试验设计,试验对象,统计检验的功效(power)还有多重性调整,所以有时相当复杂。

 

调查目的

本次调查的目的是理解和汇总当前日本工业界在实际应用中进行多重性调整和样本量计算时候所面临的挑战。

 

调查过程

1. 调查对象:JPMA(Japan Pharmaceutical Manufacturers Association)的成员,包括日本或者国外的制药公司66家(49家base日本,17家base在其他国家)。每家公司一个负责人(匿名)

2. 调查时间:2015/04/06-----2015/05/15

3.调查方式 :问卷调查

4.调查内容: 22个问题,包括试验的性质,多重性调整,样本量计算

 

调查结果

最终有效调查的公司减少到了51家(38家日本,13家国外)。共统计了151项试验。(91:验证性,60探索性)

1.探索性试验主要关于呼吸系统和疼痛,而验证性试验主要关于神经系统和感知系统

2. 探索性试验的arm的数量多于验证性试验

3. 验证性试验的97.8%做了多重性调整,探索性只有38.3%

4. 最常用的MCP(Multiplicity Comparasion Process )是fixed sequence procedure.在探索性实验中,Dunnett procedure 用得最多

5. 在选择MCPS时,考虑最多的是 monotonicity assumption and power advantage 单调性假设和功效优势

6. 1/3的探索性试验没有通过统计学方法计算样本量,在所有实验中,考虑多重性计算样本量的占一半左右

 

 

结论

1. 因为要强控制FWER在一定水平下 ,所以验证性试验基本都考虑多重性

2. 与先行研究结果有差异,主要原因是是否应用新药和试验设计者的主观因素。

3. 多种MCP都被使用到,需注意多重调整和试验对象之间的关系,Bonferroni可以被Holm替换,Dunnnett被step-down Dunnett

4.若考虑单调假设和功效优势,固定顺序法更好。特别在提前对用量进行了排序的情况下

5.在探索性实验中,若目的是找到最佳用量,用MCP-MOD或者其他基于模型的procedure更好

6. 在验证性实验中,gatekeeping procedure常用。

7.有26个考虑了多重性的验证性试验和9个探索性试验在计算样本量的时候没有考虑多重性。

8. 功效函数的定义影响样本量的计算。如检测出效果最低的用量

 

调查缺陷

1.地域限制,对象属于JPMA成员,美国或者欧洲的情况?

2.探索性研究没有询问多重性调整的原因

3. 结果不具代表性

 

 

参考文献:

Kentaro Sakamaki, Toshifumi Kamiura,Yusuke Morita, Katsuhiro, Seitaro Yoshida,Akira Wakana, , Satoru Tsuchiya,Satoru Fukimbara and Hideki Suganami, “Current Practice on Multiplicity
Adjustment and Sample SizeCalculation in Multi-arm Clinical Trials: An Industry Survey in Japan
”, Therapeutic Innovation& Regulatory Science 2016, Vol. 50(6) 846-852
 

 

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真对比实验,对比了低阶ADRC传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真实验验证,评估不同控制方法的性能;⑤掌握参数调整稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值