调查背景
研究药物的用量和反应的关系或选择最佳用药剂量,常用multi-arms clinical trials。包括探索性试验(exploratory trial )和验证性试验(confirmatory trial)。而在multi-arms clinical trials的设计阶段, 通常需要考虑到多重性分析的必要性。The International Conference on Harmonisation
(ICH)E9 和CPMP(Committee for Proprietary Medicinal Products)都声明验证性试验中考虑多重性调整的必要性。另外,样本量的设计也是值得关注的问题。但在multi-arms clinical trails中样本量的计算取决于试验设计,试验对象,统计检验的功效(power)还有多重性调整,所以有时相当复杂。
调查目的
本次调查的目的是理解和汇总当前日本工业界在实际应用中进行多重性调整和样本量计算时候所面临的挑战。
调查过程
1. 调查对象:JPMA(Japan Pharmaceutical Manufacturers Association)的成员,包括日本或者国外的制药公司66家(49家base日本,17家base在其他国家)。每家公司一个负责人(匿名)
2. 调查时间:2015/04/06-----2015/05/15
3.调查方式 :问卷调查
4.调查内容: 22个问题,包括试验的性质,多重性调整,样本量计算
调查结果
最终有效调查的公司减少到了51家(38家日本,13家国外)。共统计了151项试验。(91:验证性,60探索性)
1.探索性试验主要关于呼吸系统和疼痛,而验证性试验主要关于神经系统和感知系统
2. 探索性试验的arm的数量多于验证性试验
3. 验证性试验的97.8%做了多重性调整,探索性只有38.3%
4. 最常用的MCP(Multiplicity Comparasion Process )是fixed sequence procedure.在探索性实验中,Dunnett procedure 用得最多
5. 在选择MCPS时,考虑最多的是 monotonicity assumption and power advantage 单调性假设和功效优势
6. 1/3的探索性试验没有通过统计学方法计算样本量,在所有实验中,考虑多重性计算样本量的占一半左右
结论
1. 因为要强控制FWER在一定水平下 ,所以验证性试验基本都考虑多重性
2. 与先行研究结果有差异,主要原因是是否应用新药和试验设计者的主观因素。
3. 多种MCP都被使用到,需注意多重调整和试验对象之间的关系,Bonferroni可以被Holm替换,Dunnnett被step-down Dunnett
4.若考虑单调假设和功效优势,固定顺序法更好。特别在提前对用量进行了排序的情况下
5.在探索性实验中,若目的是找到最佳用量,用MCP-MOD或者其他基于模型的procedure更好
6. 在验证性实验中,gatekeeping procedure常用。
7.有26个考虑了多重性的验证性试验和9个探索性试验在计算样本量的时候没有考虑多重性。
8. 功效函数的定义影响样本量的计算。如检测出效果最低的用量
调查缺陷
1.地域限制,对象属于JPMA成员,美国或者欧洲的情况?
2.探索性研究没有询问多重性调整的原因
3. 结果不具代表性
参考文献:
Kentaro Sakamaki, Toshifumi Kamiura,Yusuke Morita, Katsuhiro, Seitaro Yoshida,Akira Wakana, , Satoru Tsuchiya,Satoru Fukimbara and Hideki Suganami, “Current Practice on Multiplicity
Adjustment and Sample SizeCalculation in Multi-arm Clinical Trials: An Industry Survey in Japan
”, Therapeutic Innovation& Regulatory Science 2016, Vol. 50(6) 846-852