Hudi的介绍
Hudi简介
Hudi(Hadoop Upserts Delete and Incremental)是下一代流数据湖平台。Apache Hudi将核心仓库和数据库功能直接引入数据湖。Hudi提供了表、事务、高效的upserts/delete、高级索引、流摄取服务、数据集群/压缩优化和并发,同时保持数据的开源文件格式。
Hudi不仅非常适合于流工作负载,而且还允许创建高效的增量批处理管道。
Hudi可以轻松地在任何云存储平台上使用。Hudi的高级性能优化,使分析工作负载更快的任何流行的查询引擎,包括Apache Spark、Flink、Presto、Trino、Hive等。
Hudi特性
- 可插拔索引机制支持快速Upsert/Delete。
- 支持增量拉取表变更以进行处理。
- 支持事务提交及回滚,并发控制。
- 支持Spark、Presto、Trino、Hive、Flink等引擎的SQL读写。
- 自动管理小文件,数据聚簇,压缩,清理。
- 流式摄入,内置CDC源和工具。
- 内置可扩展存储访问的元数据跟踪。
- 向后兼容的方式实现表结构变更的支持。
使用场景
1)近实时写入
- 减少碎片化工具的使用。
- CDC 增量导入 RDBMS 数据。
- 限制小文件的大小和数量。
2)近实时分析
- 相对于秒级存储(Druid, OpenTSDB),节省资源。
- 提供分钟级别时效性,支撑更高效的查询。
- Hudi作为lib,非常轻量。
3)增量 pipeline
- 区分arrivetime和event time处理延迟数据。
- 更短的调度interval减少端到端延迟(小时 -> 分钟) => Incremental Processing。
4)增量导出
- 替代部分Kafka的场景,数据导出到在线服务存储 e.g. ES。
安装Maven
上传并解压
将Maven配置到环境变量中
打开配置文件
vim etc/profile
添加配置信息
#MAVEN_HOME
export MAVEN_HOME=/opt/apache-maven-3.6.1
export PATH=$PATH:$MAVEN_HOME/bin
保存生效
source etc/profile
测试安装成功
修改为阿里镜像
修改apache-maven-3.6.1/conf目录下的settings.xml文件
在mirrors标签中加入
<!-- 添加阿里云镜像-->
<mirror>
<id>nexus-aliyun</id>
<mirrorOf>central</mirrorOf>
<name>Nexus aliyun</name>
<url>http://maven.aliyun.com/nexus/content/groups/public</url>
</mirror>
添加maven本地仓库路径
<localRepository>/opt/software/RepMaven</localRepository>
编译Hudi
上传包并解压
包的下载地址:https://github.com/apache/hudi/
tar -zxvf hudi-0.12.0.src.tgz -C /opt
修改hadoop与hive版本兼容
修改hudi-0.12.0文件夹目录下的pom.xml文件
vim /opt/hudi-0.12.0/pom.xml
默认版本兼容为2系列的所以要改成自己目前使用的版本系列 (113行左右)
新增中央仓库repository加速依赖下载(大概在pom文件第1213行)
<repository>
<id>nexus-aliyun</id>
<name>nexus-aliyun</name>
<url>http://maven.aliyun.com/nexus/content/groups/public/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
复制添加到<repositories>标签中
修改源码兼容hadoop3
vim /opt/hudi-0.12.0/hudi-common/src/main/java/org/apache/hudi/common/table/log/block/HoodieParquetDataBlock.java
修改源码文件(大概在110行),新添加一个null的参数然后保存退出
解决spark模块依赖冲突
vim /opt/hudi-0.12.0/packaging/hudi-spark-bundle/pom.xml
在380行左右出现hive依赖
<exclusion>
<artifactId>guava</artifactId>
<groupId>com.google.guava</groupId>
</exclusion>
<exclusion>
<groupId>org.eclipse.jetty</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<groupId>org.pentaho</groupId>
<artifactId>*</artifactId>
</exclusion>
在420行左右添加修改jdbc
<exclusions>
<exclusion>
<groupId>javax.servlet</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<groupId>javax.servlet.jsp</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<groupId>org.eclipse.jetty</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
在440行左右hive-metastore
<exclusions>
<exclusion>
<groupId>javax.servlet</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<groupId>org.datanucleus</groupId>
<artifactId>datanucleus-core</artifactId>
</exclusion>
<exclusion>
<groupId>javax.servlet.jsp</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<artifactId>guava</artifactId>
<groupId>com.google.guava</groupId>
</exclusion>
</exclusions>
463行左右hive-common
<exclusions>
<exclusion>
<groupId>org.eclipse.jetty.orbit</groupId>
<artifactId>javax.servlet</artifactId>
</exclusion>
<exclusion>
<groupId>org.eclipse.jetty</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
在最后手动增加jetty
<!-- 增加hudi配置版本的jetty -->
<dependency>
<groupId>org.eclipse.jetty</groupId>
<artifactId>jetty-server</artifactId>
<version>${jetty.version}</version>
</dependency>
<dependency>
<groupId>org.eclipse.jetty</groupId>
<artifactId>jetty-util</artifactId>
<version>${jetty.version}</version>
</dependency>
<dependency>
<groupId>org.eclipse.jetty</groupId>
<artifactId>jetty-webapp</artifactId>
<version>${jetty.version}</version>
</dependency>
<dependency>
<groupId>org.eclipse.jetty</groupId>
<artifactId>jetty-http</artifactId>
<version>${jetty.version}</version>
</dependency>
修改hudi-utilities-bundle的pom文件,排除低版本jetty,添加hudi指定版本的jetty
vim /opt/hudi-0.12.0/packaging/hudi-utilities-bundle/pom.xml
在350行的位置,修改如下
<exclusions>
<exclusion>
<groupId>org.eclipse.jetty</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
360行左右
<exclusions>
<exclusion>
<groupId>org.eclipse.jetty</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
423行左右
<exclusions>
<exclusion>
<artifactId>servlet-api</artifactId>
<groupId>javax.servlet</groupId>
</exclusion>
<exclusion>
<artifactId>guava</artifactId>
<groupId>com.google.guava</groupId>
</exclusion>
<exclusion>
<groupId>org.eclipse.jetty</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<groupId>org.pentaho</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
455行左右
<exclusions>
<exclusion>
<groupId>javax.servlet</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<groupId>javax.servlet.jsp</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<groupId>org.eclipse.jetty</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
476行左右
<exclusions>
<exclusion>
<groupId>javax.servlet</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<groupId>org.datanucleus</groupId>
<artifactId>datanucleus-core</artifactId>
</exclusion>
<exclusion>
<groupId>javax.servlet.jsp</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<artifactId>guava</artifactId>
<groupId>com.google.guava</groupId>
</exclusion>
</exclusions>
501行左右
<exclusions>
<exclusion>
<groupId>org.eclipse.jetty.orbit</groupId>
<artifactId>javax.servlet</artifactId>
</exclusion>
<exclusion>
<groupId>org.eclipse.jetty</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
最后增加hudi配置版本的jetty
<!-- 增加hudi配置版本的jetty -->
<dependency>
<groupId>org.eclipse.jetty</groupId>
<artifactId>jetty-server</artifactId>
<version>${jetty.version}</version>
</dependency>
<dependency>
<groupId>org.eclipse.jetty</groupId>
<artifactId>jetty-util</artifactId>
<version>${jetty.version}</version>
</dependency>
<dependency>
<groupId>org.eclipse.jetty</groupId>
<artifactId>jetty-webapp</artifactId>
<version>${jetty.version}</version>
</dependency>
<dependency>
<groupId>org.eclipse.jetty</groupId>
<artifactId>jetty-http</artifactId>
<version>${jetty.version}</version>
</dependency>
执行编译
编译并指定版本
mvn clean package -DskipTests -Dspark3.1 -Dscala-2.12 -Dhadoop.version=3.1.3 -Pflink-bundle-shade-hive3
等待七八分钟各模块编译完成
进入hudi自带的客户端
hudi-cli/hudi-cli.sh
将编译好的包拷贝到spark的jars目录中
cp hudi-spark3.1-bundle_2.12-0.12.0.jar /opt/module/spark/jars
启动spark-shell,配置启动序列化参数
spark-shell --conf "spark.serializer=org.apache.spark.serializer.KryoSerializer"
运行案例
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
import org.apache.hudi.common.model.HoodieRecord
val tableName = "hudi_trips_cow"
val basePath = "file:///tmp/hudi_trips_cow"
val dataGen = new DataGenerator
val inserts = convertToStringList(dataGen.generateInserts(10))
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Overwrite).
save(basePath)
val tripsSnapshotDF = spark.read.format("hudi").load(basePath + "/*/*/*/*")
tripsSnapshotDF.createOrReplaceTempView("hudi_trips_snapshot")
spark.sql("select fare, begin_lon, begin_lat, ts from hudi_trips_snapshot where fare > 20.0").show()