机器学习之最小二乘法:背后的假设和原理

本文探讨了机器学习中的最小二乘法,特别是其在线性回归中的应用。介绍了最小二乘法的理论基础,强调了似然函数在求解权重参数中的作用,并指出在求解过程中对矩阵秩和误差分布的假设。同时,文章引发了对参数求解方法的思考,指出这可能是个巧合,并预告将使用梯度下降法作为更通用的求解策略。
摘要由CSDN通过智能技术生成

1 最小二乘法相关理论

我们先从最基本但很典型的线性回归算法之最小二乘法说起吧,它背后的假设和原理您了解吗?本系列带来细细体会OLS这个算法涉及的相关理论和算法。

参考推送:

最小二乘法:背后的假设和原理(前篇)

似然函数求权重参数

似然函数的确是求解类似问题的常用解决方法,包括以后的解决其他模型的参数,也有可能用到似然函数。

如果对似然函数无感觉,那么也请看一下下面的消息推送:

最小二乘法原理(中):似然函数求权重参数

在以上求解过程中做了一个 Xt * X不能为奇异矩阵的假定,再加上之前的误差分布必须满足某种分布这个假定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值