机器学习之最小二乘法

最小二乘法是用于寻找数据最佳函数匹配的数学技术,常用于线性拟合。通过最小化误差平方和来确定拟合函数,简化计算通常采用(yi-f(xi))²的损失函数。在给定数据点的情况下,通过求解损失函数的偏导数为零的点,找到最优的a和b值。最小二乘法在几何上表现为寻找观测值和拟合值之间的最小距离。对于非线性拟合,可通过线性化小段或引入激活函数实现。
摘要由CSDN通过智能技术生成

欢迎关注笔者的微信公众号


最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

当我们需要设计一个线性函数( y = a x + b   或   A x + B x + C = 0 y=ax+b \ 或 \ Ax+Bx+C=0 y=ax+b  Ax+Bx+C=0)去拟合一些呈线性关系的数据点时,我们如何评价我们设计的拟合函数的拟合效果呢?换言之,我们如何评价我们设计的拟合函数与实际值的差距、损失?

一个直接的思路是计算所有实际点到拟合函数的距离的和: L = ∑ ∣ A x 0 + B y 0 + C ∣ A 2 + B 2 L = \sum \frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}} L=A2+B2 Ax0+By0+C

显然,这种计算方式有除法,开根号,开方,非常的复杂,耗时,不可取。

损失计算函数应当尽量简单且能直观反映损失。

通常使用如下函数来评价损失 L ( a , b ) = ∑ i = 1 N ( y i − f ( x i ) ) 2 L(a,b) = \sum_{i=1}^{N} (y_i-f(x_i))^2 L(a,b)=i=1N(yif(xi))2

y i y_i yi是实际值, f ( x i ) f(x_i) f(xi)是拟合函数预测值。通过计算两者的差值的平方(取绝对值会更复杂)来评判单个点的拟合损失,对所有结果求和来评判整体的拟合效果

L ( a , b ) L(a, b) L(a,b)是一个二元函数,我们的目标就是求 L ( a , b ) L(a, b) L(a,b)的最小值,即 min ⁡ L ( a , b ) \min L(a, b) minL(a,b) a , b a,b a,b的取值,这时也是拟合效果最好的。

要求 L L L的最小值,问题就转化为求 L L L的偏导数(神经网络中称为梯度)
{ ∂ L ∂ a = 0

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值