欢迎关注笔者的微信公众号
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
当我们需要设计一个线性函数( y = a x + b 或 A x + B x + C = 0 y=ax+b \ 或 \ Ax+Bx+C=0 y=ax+b 或 Ax+Bx+C=0)去拟合一些呈线性关系的数据点时,我们如何评价我们设计的拟合函数的拟合效果呢?换言之,我们如何评价我们设计的拟合函数与实际值的差距、损失?
一个直接的思路是计算所有实际点到拟合函数的距离的和: L = ∑ ∣ A x 0 + B y 0 + C ∣ A 2 + B 2 L = \sum \frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}} L=∑A2+B2∣Ax0+By0+C∣
显然,这种计算方式有除法,开根号,开方,非常的复杂,耗时,不可取。
损失计算函数应当尽量简单且能直观反映损失。
通常使用如下函数来评价损失 L ( a , b ) = ∑ i = 1 N ( y i − f ( x i ) ) 2 L(a,b) = \sum_{i=1}^{N} (y_i-f(x_i))^2 L(a,b)=∑i=1N(yi−f(xi))2
y i y_i yi是实际值, f ( x i ) f(x_i) f(xi)是拟合函数预测值。通过计算两者的差值的平方(取绝对值会更复杂)来评判单个点的拟合损失,对所有结果求和来评判整体的拟合效果
L ( a , b ) L(a, b) L(a,b)是一个二元函数,我们的目标就是求 L ( a , b ) L(a, b) L(a,b)的最小值,即 min L ( a , b ) \min L(a, b) minL(a,b)时 a , b a,b a,b的取值,这时也是拟合效果最好的。
要求 L L L的最小值,问题就转化为求 L L L的偏导数(神经网络中称为梯度)
{ ∂ L ∂ a = 0