01 回顾
已经分析了朴素贝叶斯分类,拉普拉斯修正,半朴素贝叶斯分类器,在这些理论阐述中,都带有详细的例子解释,通过例子理解相关的理论是一种快速消化公式和理论比较不错的方法。
接下来,介绍一种非常经典的求解隐变量的算法,这也是一种经典的算法。让我们先从最大似然估计入手,在03节真正分析这种算法。
02 最大似然估计求分布参数
给定一堆苹果,里面有好苹果,也有坏苹果。好果的分布满足某种概率分布,也就是拿到第 i 个苹果的概率为 P(i | theta),其中theta表示好果的分布满足某种参数theta的概率分布,这个theta就是好果分布情况的一个参数吧。
怎么求解这个参数theta呢? 我们会从一堆苹果中,随机地选取足够多的苹果,然后对每个拿到的苹果标记是好苹果,还是坏苹果,比如随机地选择了10个苹果,其中好苹果标记为 Good,否则为 bad,拿到的序列如下所示:
1 Good
2 Good
3 bad
4 Good
5 Good
6 Good
7 bad
8 Good
9 bad
10 Good
在拿到这些序列后,不就相当于我们拿到一个已知条件吗:在这批实验数据中,有7个好果,3个坏果。
根据最大似然估计的理念,既然这10个苹果序列已经出现了,那么我们就估计并认为整个样本中好苹果的分布概率为:7/10 = 0.7,即:原序列中好苹果的分布规律为:遵从概率为0.7的分布吧,