VS2019 无法解析的外部符号 cublasSgemm_v2等类似问题的解决方法

13 篇文章 9 订阅

编译程序时报出以下错误:
LNK2019 无法解析的外部符号 cublasSgemm_v2,函数 main 中引用了该符号 TEST

1.首先确认环境配置没有问题:

如果软件安装在C盘,在C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras目录下进入cmd界面进行测试。

运行以下命令:

./bandwidthTest.exe
./deviceQuery.exe

bba
在这里插入图片描述
运行程序后显示PASS表示环境配置成功。

如果这步有问题需要检查自己的系统环境变量:
在这里插入图片描述
查看是否配置好CUDA对应的路径。

2.在建立项目后,问题一般来源于项目配置,需要对项目配置进行以下修改:

在菜单栏项目->属性->配置管理器 中需要将对应选项配置为自己电脑的属性。
在这里插入图片描述
3.目录配置

右键点击项目属性–>属性–>配置属性–>VC++目录–>包含目录

添加包含目录:

$(CUDA_PATH)\include

4.库目录配置

VC++目录–>库目录

添加库目录:

$(CUDA_PATH)\lib\x64
在这里插入图片描述

5.依赖项

配置属性–>连接器–>输入–>附加依赖项

添加库文件:
cublas.lib
cublas_device.lib

注意:其他的报错需要添加对应的lib文件!在这里插入图片描述
之后运行程序便可以出现正确结果了。

### 回答1: 对不起,我无法理解您的问题。请提供更多的详细信息,以便我可以回答您的问题。这个错误提示是由于在运行cublas的计算时出现了错误导致的。具体来说,这个错误信息表明cublas函数cublassgemm_v2执行失败了。可能的原因有很多,比如输入的矩阵维度不符合要求、矩阵内容不符合要求等等。 要解决这个问题,可以先检查输入的矩阵是否符合要求,确保其维度和内容都正确。另外,还可以尝试升级GPU驱动程序或者升级cublas库来解决问题。如果问题仍然存在,可以尝试联系cublas开发者社区或GPU厂商的支持团队来获得更多帮助。 ### 回答2: cublassgemm_v2是NVIDIA开发的一个高性能矩阵乘法运算库,它可以充分利用GPU的并行计算能力,加速矩阵乘法的计算速度。这个错误信息通常出现在使用CUDA开发的程序中,它表示在执行矩阵乘法的过程中遇到了执行错误,导致程序无法继续执行。以下是一些可能导致这个错误的原因和解决方法: 1. GPU内存不足:在执行矩阵乘法的过程中,需要把数据从主机内存(CPU)复制到GPU内存,并在GPU内存中进行计算,计算完成后再将结果从GPU内存复制回主机内存。如果GPU内存不足,就会出现这个错误。解决方法是缩小数据规模,或者使用更大的GPU。 2. CUDA驱动或者CUDA toolkit版本过低:在使用cuda时,需要保证CUDA toolkit和CUDA驱动的版本匹配,如果版本不匹配,就会出现各种错误,包括这个错误。解决方法是根据CUDA toolkit的版本更新CUDA驱动。 3. 代码错误:这个错误也可能是代码逻辑错误导致的。在程序中使用cublassgemm_v2时,需要保证输入的参数正确,比如矩阵的大小、数据类型等。对于代码错误,需要仔细检查代码逻辑,找到错误并修改。 总的来说,这个错误的原因比较多,需要根据具体情况进行排除。一般来说,可以通过排查GPU内存使用情况、检查CUDA版本、仔细检查代码等方法解决。对于这个错误,我们可以在CUDA的论坛上查找更为详细的解决方案。 ### 回答3: cublassgemm_v2CUDA中的一个函数,用于在GPU上进行矩阵乘法运算。它的输入是两个矩阵A和B,以及输出矩阵C。在实际使用过程中,如果出现了“failed to run cublas routine cublassgemm_v2: cublas_status_execution_failed”的错误提示,那么就说明这个函数执行失败了。 造成cublassgemm_v2执行失败的原因可能有很多。常见的原因包括:输入矩阵A、B或输出矩阵C的大小不对;显存空间不足;显卡驱动程序或CUDA版本不稳定等。解决这个问题的途径也有很多,我们可以从以下几个方面入手: 1.检查输入矩阵A、B或输出矩阵C的大小是否正确。如果大小不对,就需要重新赋值或者调整大小。提示信息中也会告诉我们具体的矩阵大小信息,可以结合提示信息进行排查。 2.检查显存空间是否充足,如果显存空间不足,需要释放一些显存空间,或增加显存容量。可以通过使用nvprof等工具来查看显存占用情况。 3.更新显卡驱动程序或CUDA版本。如果显卡驱动程序或CUDA版本不稳定,就需要更新到最新稳定版本,以解决问题。也可以尝试降级CUDA版本,查看是否能够解决问题。 4.对于其他可能的问题,可以进行排查。比如,检查输入矩阵A、B或输出矩阵C是否存在空指针,检查整个程序是否有内存泄漏等。 总之,“failed to run cublas routine cublassgemm_v2: cublas_status_execution_failed”错误提示是一个比较常见的CUDA错误,可以通过细心的排查解决问题,提高CUDA程序的稳定性和可靠性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

daijingxin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值