5G NR QC-LDPC的编码方法(二)

5G-NR LDPC 码的编码

当采用QC-LDPC码进行编码时,选定了基矩阵后,在进行基矩阵的更新扩展后即可进行编码。将源信息序列输入到编码器中进行编码得到编码序列,并将编码后的结果表示为 c = [ S P ] c =[S P] c=SP。其中 S = S = S= ( s 1 s_1 s1 s 2 s_{2} s2 ,…, s k s_k sk)表示长度为 k k k的信息比特序列, P = P = P= ( p 1 p_1 p1 p 2 p_2 p2 ,…, p m p_m pm )表示长度为 m 的校验比特序列,它们之间服从 n = m + k n = m + k n=m+k n n n是码字长度,基矩阵 H b H_b Hb是一个 m b × n b m_b × n_b mb×nb的矩阵,核心矩阵是一个 m c × n c m_c × n_c mc×nc的矩阵。

对信息比特序列 S S S 按照每 Z Z Z个比特分为一组,总共可以分为 k b = n b - m b k_b = n_b - m_b kb=nbmb组,将分组后的比特序列记为 s = [ s ( 0 ) , s ( 1 ) , … , s s =[s(0),s(1),…,s s=s(0)s(1)s( k b - 1 k_b -1 kb1)];同理,对校验比特序列 P 进行同样的操作,总共可分为 m b m_b mb组,记为 p = [ p ( 0 ) , p ( 1 ) , … , p p=[p(0),p(1),…,p p=p(0)p(1)p( m b - 1 m_b - 1 mb1)],将校验比特分为2个部分 P = P = P= P 1 P_1 P1 \quad P 2 P_2 P2 ],其中 P 1 = [ p ( 0 ) T , p ( 1 ) T , … , p ( m c - 1 ) T ] P _1 =[p (0)^ T ,p (1)^ T ,…,p(m_c -1)^T ] P1=p(0)Tp(1)Tp(mc1)T,记为 m c m_c mc 组, P 2 = [ p ( m c ) T , p ( m c + 1 ) T , … , p ( m b - 1 ) T ] P_2 = [p (m_c )^T ,p (m_c +1 )^T ,…,p (m_b -1)^T ] P2=p(mc)Tp(mc+1)Tp(mb1)T,记为 m b - m c m_b - m_c mbmc组。

下图为一个5G NR BG2基矩阵的示例:

通过基矩阵扩展得到的校验矩阵为 H H H,利用 H ∗ c T ( C 矩 阵 的 转 置 ) = 0 H * c^T(C矩阵的转置)=0 HcTC=0,展开得到下式式:
在这里插入图片描述
其中, H i H_i Hi ( i = A , D , O , E , F , I ) (i = A,D,O,E,F,I) (i=ADOEFI)表示校验矩阵的子矩阵, H A H_A HA H D H_ D HD组成核心矩阵,其中 H D H_D HD是准双对角矩阵, H O H_O HO 表示全 0 矩阵, H I H_I HI是单位矩阵,那么可得到:
在这里插入图片描述
要得到校验比特,需要计算 P 1 P_1 P1 P 2 P_2 P2两个部分:
1)通过使用准双对角矩阵 H D H_D HD的特殊结构,迭代计算出 P 1 P_1 P1 ;
2)通过 P 1 P_1 P1和单位矩阵 H I H_I HI算出 P 2 P_2 P2

对P1的求值过程如下:
(1) 初始化。将上边公式展开后进行累加,得到:
在这里插入图片描述
i d x ( 0 < i d x < m c - 1 ) idx(0 < idx < m_c -1) idx(0idxmc1)表示子矩阵 H D H_D HD 中的第一列除去首尾 2 行后,剩余元素中为非负数的元素位置所在的行数坐标,那么 p(0)如下所示:
在这里插入图片描述
(2) 迭代。根据 H D H_D HD 结构可得到以下表达式:
在这里插入图片描述
得到 P 1 P_1 P1 后,展开前式可得 P 2 P_2 P2部分:
在这里插入图片描述
求出校验比特序列 P = [ P 1 P 2 ] P =[P_1 \quad P_2 ] P=P1P2,将其与信息比特合并,得到 c = [ S P ] c =[S \quad P] c=SP

5G-NR LDPC 码打孔、缩短和扩展

为了保证任意码长和码率的实现,5G-NR LDPC 码采用信息位打孔、信息位缩短和校验位打孔技术。
在这里插入图片描述
当得到码字 c 后,对其进行打孔和缩短,打孔和缩短的比特个数如下表所示。
在这里插入图片描述

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

daijingxin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值