PIPIOJ1166PIPI的棋盘

题目

PIPI现在有一个8*8的棋盘,他想让骑士棋子在8*8的棋盘上移动,骑士和中国象棋中的"马"移动规则相同,都是往8个方向走"日"字型。的1-8代表行号,a-h代表列号,给出骑士的初始位置和目的位置,求骑士从初始位置到目的位置最少的移动步数。

输入

输入包含多组测试用例。
对于每一组测试用例,输入两个字符串,分别代表骑士的初始位置和目的位置。

输出

样例输出:

To get from e2 to e4 takes 2 knight moves.

很简单的迷宫问题,就是方向数组的值不同。

#include <bits/stdc++.h>
using namespace std;

bool vis[9][9];
struct Node{
	int x,y;
	int path;
};
int dir[8][2]={2,1,2,-1,-2,-1,-2,1,1,2,1,-2,-1,-2,-1,2};
char s[4],e[4];
int sx,xy,ex,ey;

bool check(int x,int y){
	if(x<=0||x>8||y<=0||y>8||vis[x][y])
		return false;
	else
		return true;
}
int bfs(int sx,int sy,int ex,int ey){
	memset(vis,0,sizeof(vis));
	queue<Node> q;
	q.push({sx,sy,0});
	vis[sx][sy]=1;
	while(q.size()){
		Node now=q.front();
		q.pop();
		if(now.x==ex&&now.y==ey){//已经到达终点 
			return now.path;
		}
		for(int i=0;i<8;i++){
			int xx=now.x+dir[i][0];
			int yy=now.y+dir[i][1];
			if(check(xx,yy)){
				q.push({xx,yy,now.path+1});
				vis[xx][yy]=1;
			}
		}
	}
}

int main(int argc, char** argv) {
	
	while(scanf("%s\0",s)!=EOF){
		scanf("%s",e);
		int sx=s[0]-'a'+1,sy=s[1]-'0';
		int ex=e[0]-'a'+1,ey=e[1]-'0';
		
		int path=bfs(sx,sy,ex,ey);
		
		printf("To get from %s to %s takes %d knight moves.\n",s,e,path);
	}
	return 0;
}

 

问题描述:将马随机放在国际象棋的 8X8 棋盘的某个方格 马按走棋规则进行移动 要求每个方格上只进入一次 走遍棋盘上全部 64 个方格 编制递归程序 求出马的行走路线 并按求出的行走路线 将数字 1 2 … 64 依次填入 8X8 的方阵输出之 测试数据:由读者指定可自行指定一个马的初始位置 实现提示:每次在多个可走位置选择一个进行试探 其余未曾试探过的可走位置必须用适当结构妥善管理 以备试探失败时的“回溯”悔棋使用 并探讨每次选择位置的“最佳策略” 以减少回溯的次数 背景介绍: 国际象棋为许多令人着迷的娱乐提供了固定的框架 而这些框架常独立于游戏本身 其的许多框架都基于骑士奇异的L型移动规则 一个经典的例子是骑士漫游问题 从十八世纪初开始 这个问题就引起了数学家和解密爱好者的注意 简单地说 这个问题要求从棋盘上任一个方格开始按规则移动骑士 使之成功的游历国际象棋棋盘的64个方格 且每个方格都接触且仅接触一次 可以用一种简便的方法表示问题的一个解 即将数字1 64按骑士到达的顺序依次放入棋盘的方格 一种非常巧妙的解决骑士漫游地方法由J C Warnsdorff于1823年给出 他给出的规则是:骑士总是移向那些具有最少出口数且尚未到达的方格之一 其出口数是指通向尚未到达方格的出口数量 在进一步的阅读之前 你可以尝试利用Warnsdorff规则手工构造出该问题的一个解 实习任务: 编写一个程序来获得马踏棋盘骑士漫游问题的一个解 您的程序需要达到下面的要求: 棋盘的规模是8 8; 对于任意给定的初始化位置进行试验 得到漫游问题的解; 对每次实验 按照棋盘矩阵的方式 打印每个格被行径的顺序编号 技术提示: 解决这类问题的关键是考虑数据在计算机的存储表示 可能最自然的表示方法就是把棋盘存储在一个8 8的二维数组board 以 x y 为起点时骑士可能进行的八种移动 一般来说 位于 x y 的骑士可能移动到以下方格之一: x 2 y+1 x 1 y+2 x+1 y+2 x+2 y+1 x+2 y 1 x+1 y 2 x 1 y 2 x 2 y 1 但请注意 如果 x y 的位置离某一条边较近 有些可能的移动就会把骑士移到棋盘之外 而这当然是不允许的 骑士的八种可能的移动可以用一个数组MoveOffset方便地表示出来: MoveOffset[0] 2 1 MoveOffset[1] 1 2 MoveOffset[2] 1 2 MoveOffset[3] 2 1 MoveOffset[4] 2 1 MoveOffset[5] 1 2 MoveOffset[6] 1 2 MoveOffset[7] 2 1 于是 位于 x y 的骑士可以移动到 x+MoveOffset[k] x y+MoveOffset[k] y 其k是0到7之间的某个整数值 并且新方格必须仍位于棋盘上 扩展需求:可以考虑将结果图形化 b 考察所有初始化的情况 测试是否都能够得到解 ">问题描述:将马随机放在国际象棋的 8X8 棋盘的某个方格 马按走棋规则进行移动 要求每个方格上只进入一次 走遍棋盘上全部 64 个方格 编制递归程序 求出马的行走路线 并按求出的行走路线 将数字 1 2 … 64 依 [更多]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值