poj2243 Knight Moves 骑士游历问题的纯数学方法!!!

http://poj.org/problem?id=2243

 

下面稍微翻译一下:

 

描述:给你一个8*8的棋盘,骑士的开始位置,结束位置,让你求得骑士从开始位置开始揍到结束位置需要最小的步数是多少?(注意,骑士走日字)

输入:输入包含多组数据,每一行都是一组开始位置和结束位置,位置由两个字符组成,一个是小写字母(a-h),一个是数字(1-8),起始位置结束位置由一个空格隔开.

 

输出:输出从起始位置到结束位置,骑士所要走过的最小的步数.按照样例的格式来。

 

输入样例: 

e2 e4

a1 b2

b2 c3

a1 h8

a1 h7

h8 a1

b1 c3

f6 f6

 

输出样例:

To get from e2 to e4 takes 2 knight moves.

To get from a1 to b2 takes 4 knight moves.

To get from b2 to c3 takes 2 knight moves.

To get from a1 to h8 takes 6 knight moves.

To get from a1 to h7 takes 5 knight moves.

To get from h8 to a1 takes 6 knight moves.

To get from b1 to c3 takes 1 knight moves.

To get from f6 to f6 takes 0 knight moves.

 

-------------------------------------------------------------------------------------------------------------

一般网上见到的都是dp或者bfs方法。。

但是,对于n稍微大一点,比如80*80,100*100的方格,就很麻烦了。

 

今天中午 ,我终于想出来了一个数学方法。。

 

是这样的:

首先,对于两个点,只用考虑其横纵坐标的差值。比如a3,a4,横坐标差值为0,纵坐标差值为1

现在设横纵坐标的差值分别是x,y

 

由于马只能有8种方法,实际上只会出现4种(举个例子,本来方向向量有(1,2),(2,1),(1,-2),(2,-1),(-1,2),(-2,1),(-1,-2),(-2,-1),但是如果要最小的次数,就不可能同时出现(1,2)和(-1,-2),依次类推)

所以,我们设方向向量为(1,2),(2,1),(2,-1),(1,-2)的分别有a,b,c,d次,其中a,b,c,d可以为负数,a为负数代表方向向量为(-1,-2)

 

于是,可以列两个方程:

  a+2b+2c+d=x

  2a+b-c-2d=y

 

我们要求的是|a|+|b|+|c|+|d|的最小值

 

首先把a,b,看做常量,解得

c=(-4a-5b+2x+y)/3

d=(5a+4b-x-2y)/3

 

那么有a+2b和2x+y模3同余

现在2x+y已知,对于b进行枚举,由于-n/2<=b<=n/2,进行枚举,对每个知道a模3是多少,进而再对可能的a进行枚举,从而解出c,d,进而求出总步数。

 

但是,特别要注意一点,就是角落的问题。

比如a1,b2按上面方法算的是2,实际是4.

经过计算知,对于8*8的只有4种情况:a1 b2;a8 b7;g2 h1;g7 h8;

对这四种情况单独拿出来说就好了。。

 

以上就是求解的数学方法。下面贴代码,对于原来的8*8题目的。

在poj2243上AC了,228K,32MS。

n*n的稍作修改即可。

--------------------------------

 

#include <iostream>
#include <string>
using namespace std;

int f(int a)    //就是abs(a),绝对值
{
    if (a<0)
        return 0-a;
    return a;
}

int main()
{
    string s1,s2;
    int a,b,c,d,x,y,s,m;
    while (cin >> s1 >> s2)
    {
        if ((s1=="a1" && s2=="b2") || (s1=="b2" && s2=="a1") || (s1=="g2" && s2=="h1") || (s1=="h1" && s2=="g2"))
        {
            cout << "To get from " << s1 << " to " << s2 << " takes 4 knight moves." << endl;
            continue;
        }
        if ((s1=="a8" && s2=="b7") || (s1=="b7" && s2=="a8") || (s1=="g7" && s2=="h8") || (s1=="h8" && s2=="g7"))
        {
            cout << "To get from " << s1 << " to " << s2 << " takes 4 knight moves." << endl;
            continue;
        }
        x=s2[0]-s1[0];    //横坐标差值
        s=9999;
        y=s2[1]-s1[1];    //纵坐标差值
        for (b=-4;b<=4;b++)    //对b枚举
        {
            m=y+2*x-2*b+30;    //a模3的余数
            m%=3;
            for (a=m-6;a<=m+6;a+=3)     //对a枚举
            {
                c=(2*x+y-4*a-5*b)/3;    //求出c和d
                d=(5*a+4*b-x-2*y)/3;
                if (s>f(a)+f(b)+f(c)+f(d))
                    s=f(a)+f(b)+f(c)+f(d);     //判断是否是最小的
            }
        }
        cout << "To get from " << s1 << " to " << s2 << " takes " << s << " knight moves." << endl;
    }
    return 0;
}


 

 

 

没有更多推荐了,返回首页