PCA算法缺点

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/daixiangzi/article/details/79196751
主成分解释其含义往往具有一定的模糊性,不如原始样本完整


贡献率小的主成分往往可能含有对样本差异的重


以PCA一般不用来做直接的特征提取而是用来做特征矩阵的降维。当然,降维的结果用于分类并不理想,我们可以进一步Fisher变换(类内离差,类间阵增大类间距离,缩小类内距离)。但是Fisher变换会引入新的弱点,那就是对于训练类别的数据变得更敏感了,分类效果上升的代价是通用性下降,当类型数量急剧膨胀的时候,分类效果的函数仍然是直线下降的----但是还是比直接PCA的分类效果好得多。


PCA方法寻找的是用来有效表示同一类样本共同特点的主轴方向,这对于表示同一类数据样本的共同特征是非常有效的。但PCA不适合用于区分不同的样本类。Fisher线性判别分析(FDA)是用于寻找最有效地对不同样本类进行区分的方向。其主要思想是考虑将d维空间中的点投影到一条直线上。通过适当地选择直线的方向,有可能找到能够最大限度地区分各类样本数据点的投影方向。
展开阅读全文

没有更多推荐了,返回首页