最小费用最大流 | 二分图HK算法 -- Going Home POJ - 2195

Going Home POJ - 2195

题意:
在 n * m的矩阵上有 k个人和k所房子,一所房子只能待一个人,人可以上下左右的移动,求让每个人都走到房子里的最小总步数,注意可以经过房子所在的格子不进入房子。

思路:
跑最小费用最大流,人到房子的距离为边权,人房边的容量为1建图,再建立超级源点0连接每个人,边权为0, 边的容量为1,建立超级汇点201连接没所房子,边权为0,边的容量为1,用最大流限制人和房子的一一对应关系,同时用一边权跑最短路,每次找到一条最短路,直到跑完最大流。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int maxn = 1e5 + 5;
const int inf = 1 << 30;
struct edges{
	int u, v, cost, flow, next;
} g[maxn];
int head[205], cnt;
int d[205], last[205], min_flow[205];
int mp[105][105];

void init(int n){
	cnt = 0;
	for(int i = 0; i <= n; i++){
		head[i] = -1;
	}
}

void add(int u, int v, int flow, int cost){
	g[cnt].u = u;
	g[cnt].v = v;
	g[cnt].cost = cost;
	g[cnt].flow = flow;
	g[cnt].next = head[u];
	head[u] = cnt++;
}

bool spfa(int n, int s, int t){
	bool vis[205];
	for(int i = 0; i <= n; i++){
		vis[i] = false;
		d[i] = inf;
		min_flow[i] = inf;
	}
	queue<int> qu;
	while(qu.size()) qu.pop();
	qu.push(s);
	d[s] = 0;
	while(qu.size()){
		int u = qu.front();
		qu.pop();
		vis[u] = false;
		for(int i = head[u]; i != -1; i = g[i].next){
			int v = g[i].v;
			if(g[i].flow > 0 && d[v] > d[u] + g[i].cost){
				min_flow[v] = min(min_flow[u], g[i].flow);
				d[v] = d[u] + g[i].cost;
				last[v] = i;
				if(!vis[v]) qu.push(v), vis[v] = true;
				
			}
		}
	}
	
	return (d[t] != inf);
}

int mcfc(int n, int s, int t){
	int cost = 0, flow;
	while(spfa(n, s, t)){		
		cost += d[t];
		flow = min_flow[t];
		
		int x = t;
		while(x != s){
			int k = last[x];
			g[k].flow -= flow;
			g[k ^ 1].flow += flow;
			x = g[last[x] ^ 1].v;
		}
	}
	return cost;
}


bool check(int n, int m, int x, int y){
	return x < n && x >= 0 && y < m && y >= 0;
}

void find(int n, int m, int u, int cot){
	int range[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
	bool vis[105][105];
	int pace[105][105];
	for(int i = 0; i < n; i++)
	    for(int j = 0; j < m; j++) 
		    vis[i][j] = false, pace[i][j] = 0;
	int x = u / m;
	int y = u % m;
	vis[x][y] = true;
	queue<pair<int, int> > qu;
	while(qu.size()) qu.pop();
	qu.push(make_pair(x, y));
	while(qu.size()){
	   pair<int, int> pa = qu.front();
	   qu.pop();
	   for(int i = 0; i < 4; i++){
	   	   x = pa.first + range[i][0];
	   	   y = pa.second + range[i][1];
	   	   if(check(n, m, x, y) && !vis[x][y]) {
	   	   	   pace[x][y] = pace[pa.first][pa.second] + 1;
			   vis[x][y] = true; 
	   	   	   qu.push(make_pair(x, y));
	   	   	   if(mp[x][y] > 100) {
	   	   	   	   add(cot, mp[x][y], 1, pace[x][y]);
	   	   	   	   add(mp[x][y], cot, 0, -pace[x][y]);
			   }	  
		   }
	   }
	}
}

int main(){
   int n, m;
   char s[105];
   int indx[105];
   while(scanf("%d%d", &n, &m), n && m){  	
   	   int cnt1 = 1, cnt2 = 101;
   	   for(int i = 0; i < n; i++){
   	   	   scanf("%s", s);
   	   	   for(int j = 0; j < strlen(s); j++) {        
   	   	   	    if(s[j] == 'm') mp[i][j] = cnt1, indx[cnt1++] = i * m + j;
   	   	   	    if(s[j] == 'H') mp[i][j] = cnt2++;
   	   	   	    if(s[j] == '.') mp[i][j] = -1;
			}
		}
		  
		
		init(201); 
		
		for(int i = 1; i < cnt1; i++)
			find(n, m, indx[i], i);
		for(int i = 1; i < cnt1; i++){
			add(0, i, 1, 0);
			add(i, 0, 0, 0);
		}
		for(int i = 101; i < cnt2; i++){
			add(i, 201, 1, 0);
			add(201, i, 0, 0);
		}	
		
//		for(int i = 0; i < cnt; i++) {
//			printf("u = %d v = %d cost = %d flow = %d\n", g[i].u, g[i].v, g[i].cost, g[i].flow);  
//		}	
			
		printf("%d\n", mcfc(201, 0, 201));
	    	   
   }	
   
}

HK算法思路:
很明显这也是一个二分图问题,对于带权二分匹配我们可以用HK算法解决,HK算法(用slack数组优化后)的复杂度理论上是 n^3 但我提交时Runtime Error了,这题在时间复杂度上还是最小费用最大流方案更优秀。

code:


#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int maxn = 1e3 + 5;
const int inf = 1 << 30;
struct edegs{
	int u, v, w, next;
} g[1005];
int head[maxn], match[maxn], wx[maxn], wy[maxn], slack[maxn], cnt;
bool visx[maxn], visy[maxn];
int mp[105][105], rop[205][205];

void init(int n){
	cnt = 0;
	for(int i = 0; i <= n; i++){
		head[i] = -1;
	} 	
}

void add(int u, int v, int w){
	g[cnt].u = u;
	g[cnt].v = v;
	g[cnt].w = w;
	g[cnt].next = head[u];
	head[u] = cnt++;
}

bool dfs(int u){
	visx[u] = true;
	for(int i = head[u]; i != -1; i = g[i].next){
		int v = g[i].v;
		if(visy[v]) continue;
		int t = wx[u] + wy[v] - g[i].w;
		if(t == 0){
			visy[v] = true;
			if(match[v] == -1 || dfs(match[v])){
				match[v] = u;
				return true;
			}
		} 
		if(t > 0) slack[v] = min(t, slack[v]);      
	}
	return false;
}

int HK(int n){ 
	for(int i = 1; i <= n; i++){
		wx[i] = 0; 
		wy[i + 100] = 0;
		match[i + 100] = -1;
	}
	for(int i = 1; i <= n; i++)
	   for(int j = head[i]; j != -1; j = g[j].next)
	      wx[i] = max(wx[i], g[j].w);
	    
	for(int i = 1; i <= n; i++){
		for(int j = 1; j <= n; j++)
		   slack[j + 100] = inf;
		while(1){
		   	for(int j = 1; j <= n; j++){
			    visx[j] = visy[j + 100] = false;
		    }
		    		    
		    if(dfs(i)) break;	    
		    
		    int maxz = inf;
		    for(int j = 1; j <= n; j++)
		    	if(!visy[j + 100]) maxz = min(maxz, slack[j + 100]);
			for(int j = 1; j <= n; j++){
				if(visx[j]) wx[j] -= maxz;
				if(visy[j + 100]) wy[j + 100] += maxz;
				else slack[j + 100] -= maxz;
			}
			
		}
		
	} 
	
	
	for(int i = 0; i < cnt; i = i + 2){
		int u = g[i].u;
		int v = g[i].v;
		rop[u][v] = rop[v][u] = g[i].w; 
	}
	int ans = 0;
	for(int i = 101; i <= 100 + n; i++)
	   ans += rop[match[i]][i];
	
	return ans;
}

bool check(int n, int m, int x, int y){
	return x < n && x >= 0 && y < m && y >= 0;
}

void find(int n, int m, int u, int cot){       //bfs建图
	int range[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}};
	bool vis[105][105];
	int pace[105][105];
	for(int i = 0; i < n; i++)
	    for(int j = 0; j < m; j++) 
		    vis[i][j] = false, pace[i][j] = 0;
	int x = u / m;
	int y = u % m;
	vis[x][y] = true;
	queue<pair<int, int> > qu;
	while(qu.size()) qu.pop();
	qu.push(make_pair(x, y));
	while(qu.size()){
	   pair<int, int> pa = qu.front();
	   qu.pop();
	   for(int i = 0; i < 4; i++){
	   	   x = pa.first + range[i][0];
	   	   y = pa.second + range[i][1];
	   	   if(check(n, m, x, y) && !vis[x][y]) {
	   	   	   pace[x][y] = pace[pa.first][pa.second] + 1;
			   vis[x][y] = true; 
	   	   	   qu.push(make_pair(x, y));
	   	   	   if(mp[x][y] > 100) {
	   	   	   	   add(cot, mp[x][y], pace[x][y]);
	   	   	   	   add(mp[x][y], cot, pace[x][y]);
			   }	  
		   }
	   }
	   
	}
}

int main(){
	int n, m;
	char s[105];
	int indx[105];
    while(scanf("%d%d", &n, &m), n && m){
    	
    	init(200);
    	
    	int cnt1 = 0, cnt2 = 100; 
    	for(int i = 0; i < n; i++){
    		scanf("%s", s);
    		for(int j = 0; j < strlen(s); j++){
    			if(s[j] == 'm') mp[i][j] = ++cnt1, indx[cnt1] = i * m + j;
    			if(s[j] == 'H') mp[i][j] = ++cnt2;
    			if(s[j] == '.') mp[i][j] = -1;
			}
		}
		      
		
		for(int i = 1; i <= cnt1; i++)
		    find(n, m, indx[i], i);
		 
//		 for(int i = 0; i < cnt; i++){
//		 	printf("u = %d v = %d w = %d\n", g[i].u, g[i].v, g[i].w);
//		 }  
		printf("%d\n", HK(cnt1));
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值