数位dp(平方和问题) -- 吉哥系列故事——恨7不成妻 HDU - 4507

吉哥系列故事——恨7不成妻 HDU - 4507

题意:
有T次询问,每次询问给两个数 l、r(1 <= l <= r <= 1e18),求在 l、r 间所有与7无关数的平方和。

与7无关数定义: 如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关,都不符合则是与7无关数
  1、整数中某一位是7;
  2、整数的每一位加起来的和是7的整数倍;
  3、这个整数是7的整数倍;

思路:

  • dp[pos][sum1][sum2],一维表示一个数从左至右第pos个数位,二维sum1表示前缀每个一位的和模7,三维sum2表示前缀数模7.
  • 本题的关键是求平方和,求所有与7无关数的平方和要维护三个变量num、sum、qsum,num表示与7无关的数的个数,sum表示与7无关的数的和的维护需要用到第一个个数,qsum表示贡献和,贡献和qsum的维护需要用到前面两个

(i * 10 ^ pos + next ) ^ 2 = (i * 10 ^ pos ) ^ 2 + 2 * i * 10 ^ pos * next + next ^ 2。
next表示贡献子问题。

code:




#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const long long mod = 1e9 + 7;
struct node{
	long long num;  //与7无关的数个数    
	long long sum;  //与7无关的数的部分和 
	long long qsum; //贡献和 
};
node dp[20][10][10];
int head[20];
long long d[20];

node dfs(int pos, int sum1, int sum2, bool limit){
	if(pos == -1){
		node q;
		q.num = q.sum = q.qsum = 0; 
		if(sum1 % 7 != 0 && sum2 % 7 != 0) {
			q.num = 1;
			return q;
		}
		else return q;
	}
	
	if(!limit && dp[pos][sum1][sum2].num != -1) return dp[pos][sum1][sum2];
	node q, p;
	q.num = q.sum = q.qsum = 0;
	int max_digit = limit ? head[pos] : 9;
	for(int i = 0; i <= max_digit; i++){
		if(i == 7) continue;
		p = dfs(pos - 1, (sum1 + i) % 7, (sum2 * 10 + i) % 7, limit && i == max_digit);
				
		q.num = (q.num + p.num) % mod;	    
		long long res = i * d[pos] % mod;
		q.sum = (q.sum + res * p.num % mod + p.sum) % mod;
		
		q.qsum = (q.qsum + res * res % mod * p.num % mod) % mod;
		q.qsum = (q.qsum + res * p.sum % mod * 2 % mod) % mod;
	    q.qsum = (q.qsum + p.qsum) % mod;
	}
	if(!limit) dp[pos][sum1][sum2] = q;
	return q;
}

long long solve(long long l){
	int cot = 0;
	while(l){
		head[cot++] = l % 10;
		l /= 10;
	}
	
  	node q = dfs(cot - 1, 0, 0, true);	
  	         
	return q.qsum % mod;
}

int main(){
	int T;
	long long l, r;
	
	d[0] = 1;
	for(int i = 1; i <= 18; i++) d[i] = d[i - 1] * 10 % mod;
	for(int i = 0; i < 20; i++)
       for(int j = 0; j < 10; j++)
          for(int k = 0; k < 10; k++)
             dp[i][j][k].num = -1;
             
	scanf("%d", &T);
	while(T--){
		scanf("%lld%lld", &l, &r);
		long long ans = solve(r) - solve(l - 1);
		ans = (ans % mod + mod) % mod;
		printf("%lld\n", ans);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值