题意:
有T次询问,每次询问给两个数 l、r(1 <= l <= r <= 1e18),求在 l、r 间所有与7无关数的平方和。
与7无关数定义: 如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关,都不符合则是与7无关数
1、整数中某一位是7;
2、整数的每一位加起来的和是7的整数倍;
3、这个整数是7的整数倍;
思路:
- dp[pos][sum1][sum2],一维表示一个数从左至右第pos个数位,二维sum1表示前缀每个一位的和模7,三维sum2表示前缀数模7.
- 本题的关键是求平方和,求所有与7无关数的平方和要维护三个变量num、sum、qsum,num表示与7无关的数的个数,sum表示与7无关的数的和的维护需要用到第一个个数,qsum表示贡献和,贡献和qsum的维护需要用到前面两个
(i * 10 ^ pos + next ) ^ 2 = (i * 10 ^ pos ) ^ 2 + 2 * i * 10 ^ pos * next + next ^ 2。
next表示贡献子问题。
code:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const long long mod = 1e9 + 7;
struct node{
long long num; //与7无关的数个数
long long sum; //与7无关的数的部分和
long long qsum; //贡献和
};
node dp[20][10][10];
int head[20];
long long d[20];
node dfs(int pos, int sum1, int sum2, bool limit){
if(pos == -1){
node q;
q.num = q.sum = q.qsum = 0;
if(sum1 % 7 != 0 && sum2 % 7 != 0) {
q.num = 1;
return q;
}
else return q;
}
if(!limit && dp[pos][sum1][sum2].num != -1) return dp[pos][sum1][sum2];
node q, p;
q.num = q.sum = q.qsum = 0;
int max_digit = limit ? head[pos] : 9;
for(int i = 0; i <= max_digit; i++){
if(i == 7) continue;
p = dfs(pos - 1, (sum1 + i) % 7, (sum2 * 10 + i) % 7, limit && i == max_digit);
q.num = (q.num + p.num) % mod;
long long res = i * d[pos] % mod;
q.sum = (q.sum + res * p.num % mod + p.sum) % mod;
q.qsum = (q.qsum + res * res % mod * p.num % mod) % mod;
q.qsum = (q.qsum + res * p.sum % mod * 2 % mod) % mod;
q.qsum = (q.qsum + p.qsum) % mod;
}
if(!limit) dp[pos][sum1][sum2] = q;
return q;
}
long long solve(long long l){
int cot = 0;
while(l){
head[cot++] = l % 10;
l /= 10;
}
node q = dfs(cot - 1, 0, 0, true);
return q.qsum % mod;
}
int main(){
int T;
long long l, r;
d[0] = 1;
for(int i = 1; i <= 18; i++) d[i] = d[i - 1] * 10 % mod;
for(int i = 0; i < 20; i++)
for(int j = 0; j < 10; j++)
for(int k = 0; k < 10; k++)
dp[i][j][k].num = -1;
scanf("%d", &T);
while(T--){
scanf("%lld%lld", &l, &r);
long long ans = solve(r) - solve(l - 1);
ans = (ans % mod + mod) % mod;
printf("%lld\n", ans);
}
}