举例来说,CPU和GPU在进行计算时,就有许多不同。对于处理器来说,它是一颗通用处理器。它要应对各种类型的计算应用。无论是数学方面的,还是逻辑方面的运算。我们可以看到,一颗比较常规的处理器其中的ALU计算单元仅仅占据整个核心面积的25%以内。在处理器中,超过50%的核心面积用来制作Cache高速缓存,无论是L1、L2还是片上的L3。而另外还有25%的核心面积用来作为控制器。它控制着处理管线的运作,控制着各种分支预测,让多核心处理器可以更有效率。
而我们再反观GPU,其结构要简单的多。GPU的任务是加速3D像素的计算。因此我们在显卡中可以看到数以百计的流处理器单元或者是CUDA核心。而在整个计算过程中,GPU承担的逻辑计算任务非常小。同时它有着更宽的显存带宽,有着更高速的显存。所以在GPU芯片中,也就无需更大容量的片上缓存机制。
通过上文的分析,我们可以看到CPU的在处理时,适合作所有工作,各个方面都比较平均。逻辑处理能力要比GPU快,但是对于数学计算方面,其速度不如具有海量处理核心的GPU快。而GPU方面,数学计算性能强大,大规模并行处理机制强大,但是逻辑处理能力不足,仅仅能在某些计算领域应用。