
twsvm
文章平均质量分 62
twsvm
DaMeng999
这个作者很懒,什么都没留下…
展开
-
ELS-TWSVM
前述知识: TWSVM LS-TWSVM 与TSVM相比,LS-TSVM 的关键优势是 LS-TSVM 是一种非常快速和简单的算法。ELS-TWSVM(基于能量的双最小二乘支持向量机) 的目的是改善 LS-TSVM 的鲁棒性。 基于能量的 LS-TSVM 为每个超平面的引入能量的概念来提高其鲁棒性,引入能量后的原始最优化问题为(以其中一个超平面为例): 其中另一个超平面的最优化问题类似: 将原始最优化问题的等式约束添加到最小化项中得到: 求其对...原创 2022-05-04 18:27:18 · 414 阅读 · 0 评论 -
LS-TWSVM
目录 1. 最优化问题 2. 求解 3. 算法流程 在 TWSVM 中,利用拉格朗日乘子构建一个对偶问题并进行求解,但时间开销仍然比较大,对此有人提出了用最小二乘法来求解原始问题,求解之前需要对原始问题做一定的变换,将不等式约束变成等式约束。 1. 最优化问题 LS-TWSVM 的最优化问题定义如下,以其中一个超平面为例子: 该公式的最小化项的首项是正样本点到超平面的距离平方和,等式约束的目的是所有的负样本点到该超平面的距离在 1 附近,最小化公式的第二项就是这个误差的平方...原创 2022-04-28 19:18:06 · 679 阅读 · 1 评论 -
TWSVM
与传统的 SVM 相比,TWSVM 是求解一对非平行的超平面,其中一个超平面离正样本点更近,另一个超平面离负样本点更近;它的模型和 SVM 模型对比结果如下: 1. 原始最优化问题 TWSVM 分类器是求解如下一对 QPP 方程: 1.1 符号说明 ,是人为调整的超参数; ,是正样本的数目,是样本的维数,矩阵意味着所有的正样本点; ,是正样本的数目,是样本的维数,矩阵意味着所有的负样本点; 是两个超平面的法向量; 是两个超平面的常量; 是...原创 2022-04-28 15:43:38 · 1287 阅读 · 0 评论