- 博客(31)
- 收藏
- 关注
转载 解决Visual Studio 2010 IDE编写程序时不显示窗口或窗口一闪而逝的解决方法
[解决方法](https://www.jb51.net/article/147722.htm)
2022-04-02 07:33:55
1481
原创 使用ID3算法对简单数据进行分类
ID3算法的具体介绍实现代码from sklearn.feature_extraction import DictVectorizer # 对输入的数据的是有要求的。import csvfrom sklearn import preprocessingfrom sklearn import treeimport numpy as npfrom six import StringIOfrom IPython import embedallEectrionicsData = open...
2021-12-21 20:40:20
761
原创 简单神经网络的设计
神经网络基础在使用的神经网络之前必须确定神经网络的层数,以及神经元所对应的个数特征向量的被传人到神输入层的时候,通常先进行标准化的处理到0-1之间,这样是可以加速学习的过程的。交叉验证:我们是把一份数据,首先是分为10份,其中第一份是对应的测试集,后面9份是对应的训练集在第二次进行训练的时候,我们把第二份做为测试集,1 3-10作为训练集,这样就是来训练10次,这样就是取得每一次的准确性后,然后是把这10次准确性,来求出相应的平均值的过程的。神经网络训练的停止的条件是:权重的更新是低于某个伐值
2021-11-25 08:53:09
1581
原创 多元线性回归
存在两个未知x的多元线性回归主要是通过A和B两列的值,来对C列的值进行预测的过程的。其中A列是表示相应的英里数B是表示所经过的站点数,C是表示的所对应的时间的层本。from numpy import genfromtxtimport numpy as npfrom sklearn import datasets,linear_modeldataPath = r"D:\Pratice Code\MLeaning\table2.csv"# 从文本文件中提取相应的数据,然后是把他转换为numpy
2021-11-24 09:24:45
472
原创 简单线性回归
简单线性回归也就是函数只对应的有一个自变量值其中列A表示汽车行驶的英里数,B是表示经过多少个站点,C表示的花费多少时间层本我们现在通过A 和B的值去预测C所对应值,首先是通过表中的数据进行训练然后是在来对进行预测import numpy as npdef fitSLR(x,y): n = len(x) dinominator = 0 # 分母 numerator = 0 # 这里是对应分子 for i in range(0,n): numerato
2021-11-24 09:03:54
1038
原创 SVM支持向量机的简单应用和SVM人脸识别
SVM的简单应用SVM支持向量机SVM寻找区分两类的点的超平面(Hyper plane),使用的边际(margin)是越大越好的所有坐落在边际两边的超平面上的被称作为“支持向量”(1,1)(2,0)(2,3)from sklearn import svmX = [[2,0],[1,1],[2,3]] # 首先是来定义的3个点y = [0,0,1] # 就是对应分类的标记。clf = svm.SVC(kernel= 'linear') # 使用的线性的核函数clf.fit(X,y)p
2021-11-03 21:42:16
419
原创 KNN算法的具体实现
KNN算法,也就是对应的最近邻规则算法KNN算法的优缺点,是对K的选择是敏感的。算法优点是容易实现,简单,通过的对k的选择具备丢噪音的健壮性的过程的。缺点:空间复杂度是比较高的(因为存在大量的计算的过程的。)我们在选择k的时候总是选择奇数,因为我们这样总是能够以少数服从多数的方式,采用的投票的方式来决定类别的当我们数据集分布不是平衡的时候,比如其中一类样本量过大时候,新的未知样本是容易被归为这个主导类样本的。其中KNN最主要的过程是首先是取K的,然后是找相应的要预测点,通过预测的点与现有全
2021-11-01 21:10:22
828
原创 AttributeError: ‘dict‘ object has no attribute ‘iteritems‘
原始代码块sortedVotes = sorted(classVotes.iteritems(),key=operator.itemgetter(1),reverse=True)改变后所对应的代码块py 3.5以后的变化了sortedVotes = sorted(classVotes.items(),key=operator.itemgetter(1),reverse=True)
2021-11-01 20:43:24
108
原创 _csv.Error: iterator should return strings, not bytes (did you open the file in text mode?)
错误原因:因为此文件并非是csv文件,而是一个txt文件,这是我在做knn分类的时候,所遇到的问题的。原始是打开方式是“rb” with open(filename,'rb') as csvfile: lines = csv.reader(csvfile) dataset = list(lines)现在是把rb 改写成为rt 这样就是可以完美执行 with open(filename,'rt') as csvfile: lines = csv
2021-10-29 17:15:05
715
原创 sklearn之reshape(-1,1)在python3以后发生了相应的改变的
predictedY = clf.predict(newRowY)print("predictedY:"+ str(predictedY)会出现这样的错误的Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.resha现在要改变成为predictedY = clf.predict(np.array(newRowX).reshape(1,-1))print(
2021-10-28 17:33:18
758
原创 tensorboard的可视化的过程
tensorboard可视化的过程的tensorboard --logdir=“D:\Pratice Code\TensoFlow实战Google深度学习框架\201806-github代码数据打包\1.4.0\数据” 其中后面所对应的路径,就是你运行程序所生成的一个文件路径。注意 要打开cmd 运行上面所提到的文件的命令的过车的。...
2021-10-20 20:33:06
114
原创 使用pip来对相应的版本进行降低的过程的
python -m pip install pip==19.2.3 使用这个方法是能够来对相应的版本进行降低的pip install six包主要是来对相应的版本的进行降低其中sk-learn包中 sklearn.externals.six已经在 sk-learn中已经过时,sklearn 0.23版本已经删掉了这个sklearn.externals.six,直接从six中引入StringIO即可from sklearn.externals.six import StringIO已经过时要选用 fr
2021-10-20 10:28:33
1112
转载 anaconda如何来来配置多个python的版本
1 首先确保你的系统里已经安装了Conda,打开CMD窗口,执行命令:conda --version2 conda info --envs 查看现在已经安装的python的版本3 conda create --name python36 python=3.6 这样就是创建了另一个python版本的环境的4 在使用conda info --envs命令发现多了一个python36的版本环境的5 python --version 发现是原来的python版本环境,比如我的版本环境是python = 3.
2021-07-27 09:17:34
953
原创 CrossEntropyLabelSmooth 的代码
本文的注释可能有不正确的地方,望知CrossEntropyLabelSmoothimport torchimport torch.nn as nnfrom IPython import embedclass CrossEntropyLabelSmooth(nn.Module): """ 用于指定带标签平滑的交叉熵公式 ,用于指定带标签平滑的交叉熵公式 """ def __init__(self, num_classes, epsilon=0.1, use_gp
2021-06-08 20:44:04
1562
转载 WarmupMultiStepLR的使用
原文WarmupMultiStepLR"""Implements gradual warmup, if train_steps < warmup_steps, thelearning rate will be `train_steps/warmup_steps * init_lr`.Args: warmup_steps:warmup步长阈值,即train_steps<warmup_steps,使用预热学习率,否则使用预设值学习率 train_steps:训练了的步长数
2021-04-21 14:38:47
3248
3
原创 Gini指数的计算
Gini指数的计算import torchimport numpy as npdef gini_index_single(a,b): single_gini = 1 - ((a/(a+b))**2 + (b/(a+b))**2) return round(single_gini,2) ## 是来表示的是对应着他们所对应的纯度的。其中所对应的G## Gini指数越小的话,所对应的纯度就是越高的print(gini_index_single(105,39))def gini_
2021-04-18 19:37:10
2690
1
原创 泛化概率来预测预测测试概率
a[0,:]的用法from numpy import *import numpy as np## 这里是输出第一行,然后是对应的列全部来进行输出的a=np.array([[1,2,3],[4,5,6]])print(a[0,:])unique()的用法## 去除数组中的重复数字,然后是来排序进行输出的b=np.random.randint(0,5, size=(10))print(b)print(np.unique(b))tolist()用法## 这里是来把数组转换为相应的列表的
2021-04-13 14:37:14
378
原创 代价敏感错误率与代价曲线
代价敏感错误率与代价曲线https://www.bilibili.com/video/BV17J411C7zZ?p=21 视频import torchimport osos.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"output_score = list(range(12)) ## 定义一个列表里面的数字是0-11print(output_score)y = [0,0,0,0,1,0,1,1,0,1,1,1] ## 其中0表示的是5,1表示的不是5,这里
2021-04-12 20:38:24
1180
转载 progressbar 用法和shape的用法
shape的用法import torch#原文地址 https://www.pythonheidong.com/blog/article/759610/fbc30ff6fcd949c8de7b/b = torch.rand(3,4)print(b) ## 返回一个3*4的张量print(b.shape) ## torch.Size([3, 4])print(b.shape[0]) ## 这里是来返回第一个维度b = torch.rand(6) ## 这里是来随机生成一维的向量的
2021-04-08 20:13:24
229
1
翻译 torch.max()和torch.mean()的用法
torch.max()和torch.mean()的用法import torchimport torch.nn as nn## 原文地址https://blog.csdn.net/liuweiyuxiang/article/details/84668269## 这里是来输入tensor,然后是来返回tensor中所对应的最大值a = torch.randn(1, 3) ## 这里是来随机生成3个数print(a)print(torch.max(a))## 然后是对应按维度来返回最大值,并
2021-04-07 19:59:03
734
翻译 mAP计算过程
解释首先我们是通过在查询集中输入一张图片以后,在候选集中我们就是能够得到五张已经标记了图片,(也就是说查询后是正确的图片)然后我们对查询后的图片来进行排序,也就是对gallery图库中图片按照相似度的大小来进行排序,我们这里是找10张最相似的图片来进行排序。也就是说与查询的图片相似度最高的10张图片,当然这里其中可能是会出现与真实标签图片不一样的图片的。(如上图)然后我们是用查准率与查全率(召回率)来进行比较 第一张图片查准率是(1/1 = 1)在第三张图片上有2张是查询正确的有1张是查询错误的(2.
2021-04-07 17:56:39
704
原创 查准率与查全率的计算
查准率与查全率的计算假设我们这里有100个样本 x1 ,x2 x3 …x100Y(真实标签) 1 0 1 … 1Y’(预测标签) 0 0 0 …1真实情况预测结果正例反例正例60(TP真正例)反例10(FP假正例)####正样本代表用1 表是 ,负样本用0表是,这是一个二分类问题。其中我们这里对应的真实的情况是有正样本70个,负样本30个,所以总共
2021-04-07 10:52:28
4341
转载 对modules()中的参数的进行初始化,能够加速模型的收敛
原文地址是来对相应的参数的初始化的过程的。进行参数的初始化是会来加快模型收敛速度的。先从self.modules()中遍历每一层,然后判断更层属于什么类型,是否是Conv2d,是否是BatchNorm2d,是否是Linear的,然后根据不同类型的层,设定不同的权值初始化方法 for m in self.modules(): ## 依次来返回模型中的各个层的 if isinstance(m, nn.Conv2d): ## 判断是否是相同的实例对象的。
2021-04-06 15:38:36
1048
转载 深度学习中epoch,iteration和batchsize
原文地址深度学习中epoch,iteration和batchsize(1)batchsize:是对应的批大小,在深度学习中,一般采用SGD训练,是在每次训练在训练集中取batchsize个样本的进行训练;(2)iteration:1个iteration等于使用batchsize个样本训练一次;(3)epoch: 1个epoch等于使用训练集的全部样本训练一次;举个例子,训练集有1000个样本,batchsize=10,那么:训练完整个样本集需要:100次iteration,1次epoch。
2021-04-03 18:21:19
296
翻译 Python中logger日志模块详解
###原文地址注:本文所有注释的信息,不一定正确,望知import logginglogging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s') ## 当这里的logging.DEBUG的时候就会输出4条信息logger = logging.getLogger(__name__) ## 这里是通过相应的实例化的方法logger.info('Star
2021-04-03 16:01:50
1037
原创 isdir和isfile的区别,torch.max(k,1)的用法
isdir和isfile的区别import osprint(os.path.isdir('D:\Pratice Code\DataSet\吴恩达')) ## 用来判断某一路径是否为目录print(os.path.isfile('D:\Pratice Code\DataSet\吴恩达')) ## 输出的结果的是falseprint(os.path.isfile('D:\Pratice Code\DataSet\Linux开发学习路线\Linux应用开发学习路线_V1.1.pdf')) ##这里是
2021-04-01 18:31:05
318
翻译 学习率的各种的不同的使用的方式和easydict的作用
原文地址easydict的作用:可以使得以属性的方式去访问字典的值!from easydict import EasyDict as edictd = edict({'foo':3, 'bar':{'x':1, 'y':2}})print(d.foo) ## 这样是会得出输出值为3print(d.bar.x) ## 1print(d.bar.y) ## 2d = edict(foo=3)print(d.foo) ## 3学习率的各种的不同的使用的方式class net(nn
2021-03-31 20:03:45
151
翻译 globals()函数的用法和DataParaller()使用方法
1 globals()函数的用法和DataParaller()使用方法这里是对globals()函数所对应的语法,globals() 函数会以字典类型返回当前位置的全部全局变量。a=‘runoob’print(globals()) ## 这里是来返回包括所有的导入的变量的过程的。2 DataParaller是会对数据来进行自动的差分的,并将作业订单发送到多个GPU上的多个模型在每个模型完成它们的工作之后,DataParallel 在将结果返回给你之前收集和合并结果。import torchim
2021-03-31 12:02:04
456
原创 logging的使用的过程
项目场景:logging的使用的过程问题描述:import logging ## 这里是来输出一些日志的相关的信息的logging.debug(“This is a debug log.”)logging.info(“this is a info log.”)logging.warning(“this is a warning log.”) ##因为这里这里只有警告以上级别的文章才能够被输出logging.error(“This is a error log.”)logging.critic
2021-03-30 18:27:00
131
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人