扣子(Coze)怎么搭建工作流?

一、扣子(Coze)工作流介绍

1、什么是工作流?

在扣子(Coze)平台中,工作流是一种将多个任务、操作或工具按照特定的顺序和逻辑进行组合编排的流程。它可以自动化地处理复杂的业务场景,使得不同的插件、模型等元素能够协同工作,以实现更高效、准确的功能输出。

img

以下是一个简单的工作流:

img

通俗来讲,工作流就是为了完成预设目标所拆解的一系列步骤所组合在一起的流程。

2、为什么有了提示词已经能够让大模型按照一定流程完成输出的情况下,还需要有工作流?

事实上,提示词(Prompt)和工作流(Workflow)在AI应用中是互补关系而非替代关系,其核心差异在于**「系统化能力」**的构建。以下是需要工作流的六个关键原因:

1. 处理复杂任务的拓扑结构

  • 「提示词的局限」
  • 单次交互更适合线性问答,而真实业务常涉及多节点决策树(如客户投诉处理需触发工单生成→责任判定→补偿方案→满意度回访)
  • 「工作流的价值」
  • 将业务逻辑转化为可编排的流程图
  • 支持条件分支(IF/ELSE)、并行处理、人工复核等结构
  • 例:合同审核流程自动识别「金额>100万」时增加法务会签环节

2. 多系统协同的粘合剂

  • 「提示词的局限」
  • 纯语言模型无法直接调用API、读写数据库或触发硬件设备
  • 「工作流的价值」
  • 构建「输入理解→数据处理→动作执行」的闭环
  • 实现跨系统联动(如:识别用户退订意向→查询CRM记录→生成挽留话术→自动发送优惠券)
  • 通过连接器与ERP/邮件系统/物联网设备无缝对接

3. 动态环境适应性

  • 「提示词的局限」
  • 静态指令难以应对实时变化(如库存状态更新、突发政策调整)
  • 「工作流的价值」
  • 嵌入事件监听机制(如当供应链系统库存低于阈值时自动触发补货流程)
  • 支持实时数据注入下的流程动态调整
  • 例:电商客服对话中识别「物流异常」,立即调取运单数据并跳转至赔偿流程

4. 质量控制的工业化保障

  • 「提示词的局限」:依赖单次生成质量,缺乏纠错与验证机制
  • 「工作流的价值」
  • 设置多重校验节点(AI初步回复→合规性过滤→人工抽检)
  • 构建反馈闭环(将bad case自动加入训练数据集)
  • 实现过程可追溯(完整记录每个决策节点的输入输出)

5. 资源调度与负载管理

  • 「提示词的局限」
  • 无法自主分配算力、管理并发或优化响应延迟
  • 「工作流的价值」
  • 智能路由机制(简单问题用轻量模型,复杂问题调用GPT-4)
  • 流量削峰设计(高峰期自动缓存请求队列)
  • 成本优化策略(根据任务优先级动态选择API供应商)

6. 企业级可维护性

  • 「提示词的局限」
  • 散落的Prompt难以系统化迭代
  • 「工作流的价值」
  • 版本控制(灰度发布新流程,AB测试不同节点设计)
  • 模块化复用(将验证通过的「客户身份核验」模块嵌入多个业务流程)
  • 可视化监控(实时查看各节点耗时、错误率等指标)

核心差异总结表

img

提示词是「让AI理解某个具体问题」,而工作流是「让企业级业务在AI驱动下可靠运转」。正如螺丝钉(Prompt)和自动化生产线(Workflow)的关系——单个零件的精密度再高,也需要系统设计才能实现规模化价值输出。

二、创建一个简单工作流

工作流内置了大语言模型(LLM)节点,你可以将用户输入的内容传输给 LLM 进行处理并返回。

相对于不使用工作流的智能体,包含大模型节点的工作流可单独指定模型的各项配置参数,通过附加的提示词约束模型的行为,使智能体在指定场景下的运行过程更稳定、输出内容更符合预期效果。

img
img
img
img

到此,一个简单的工作流创建完毕,今天就分享到此啦。希望对你有所启发和帮助!

学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。【点击蓝字获取】

【2025最新】AI大模型全套学习籽料(可白嫖):LLM面试题+AI大模型学习路线+大模型PDF书籍+640套AI大模型报告等等,从入门到进阶再到精通,超全面存下吧!

<think>嗯,用户想了解Coze扣子工作流的教程。首先,我需要确认用户所说的Coze是否是他们自己可能拼写错误,或者是否有其他名称的产品。不过根据常见的工具,可能是指字节跳动推出的Coze平台,它是一个AI Bot开发平台,工作流是其核心功能之一,用于自动化任务处理。 接下来,我需要回忆Coze工作流的主要功能和操作步骤。工作流通常包括触发器、节点配置、条件判断、API调用、数据处理等模块。可能需要分步骤介绍如何创建、配置和调试工作流。 用户可能需要基础的操作指南,比如如何进入工作流界面,添加节点,设置输入输出,使用变量,以及测试流程。此外,常见的使用场景示例可能对他们有帮助,比如自动化回复、数据处理或集成外部服务。 需要确保回答结构清晰,分步骤说明,并且语言简洁。同时,要检查是否遵循了系统级指令,比如数学公式的格式,但在这个问题中可能用不到数学公式。不过还是要留意,如果有变量或代码块,可能需要用反引号包裹。 另外,用户可能遇到问题,比如节点配置错误或调试失败,可以提醒他们检查输入输出格式,或者查看官方文档。最后,附上官方资源链接会更好,但不确定是否允许,所以可能需要建议他们访问官网或社区。 现在组织回答结构:先介绍工作流是什么,然后分步骤讲解创建流程,再给出示例,最后注意事项和总结。确保每个步骤都有编号或小标题,方便用户跟随。</think>以下是为您整理的Coze扣子平台)工作流操作指南,分步骤解析核心功能与使用方法: --- ### 一、工作流基础概念 **作用**:通过可视化节点串联复杂任务,实现自动化处理(如多步计算、API调用、条件判断等)。 --- ### 二、操作步骤详解 #### 1. **创建工作流** - 进入Bot编辑页 → 点击「工作流」→「新建」 - 命名工作流并填写描述(建议明确功能) #### 2. **配置输入参数** - 点击「输入参数」→「添加参数」 - 定义变量名称、类型(文本/数字/布尔值等)及描述 *示例:添加`user_query`接收用户提问* #### 3. **添加节点与逻辑 **(1) 基础节点类型** - **代码节点**:执行Python脚本(支持数据处理) - **API调用**:接入外部服务(需配置URL/Headers) - **条件分支**:通过`if-else`控制流程走向 - **大语言模型**:调用AI生成文本 **(2) 节点连接技巧** - 拖动节点右侧「+」建立连接线 - 通过`{{变量名}}`引用上游输出值 *示例:`{{api_response.data}}`* #### 4. **调试与测试** - 点击右上角「调试」→ 输入测试参数 - 逐节点查看执行状态与数据流向 - 修改错误节点后需重新保存 --- ### 三、实用案例演示 **场景**:自动生成天气提醒 1. 输入参数:`location`(城市名) 2. 添加「API节点」调用天气接口 3. 添加「条件节点」判断是否下雨 - 是 → 调用LLM生成带伞提醒 - 否 → 返回基础天气信息 --- ### 四、注意事项 1. **变量作用域**:每个节点的输出需手动传递到下游 2. **错误处理**:建议为API节点设置重试机制 3. **性能优化**:避免在循环中频繁调用收费API --- ### 五、学习资源推荐 1. 官方文档:`coze.com/docs/workflows`(需替换为真实地址) 2. 社区案例库:平台内置的模板中心 3. 调试技巧:善用「控制台日志」输出中间值 如需特定场景的配置演示,可提供具体需求进一步详解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值