前段时间搭建了个人可以DIY数字人的智能体(包括选择角色、调节背景、调节数字人姿态、数字人显示大小等),然后把它分享到了小红书等短视频平台,发现对它感兴趣的人还挺多的!
也得到了很多小伙伴的点赞和收藏,也有小伙伴不断问我怎么做😂,这篇文章将给大家讲讲这个《AI数字人》是怎么实现的!内容很干,值得收藏反复咀嚼😁
涉及到的知识点和准备:
总体搭建要点
1.四条工作流搭建:
- 展示列表工作流show_Digital_Human_list
- 选择数字人工作流selsect_Digital_Human
- 制作数字人工作流make_Digital_Human
- 手动获取数字人结果工作流get_video_byhand
2.三条流程卡片设计:
- 展示列表工作流
- 选择数字人工作流
- 制作数字人工作流
涉及知识点:
1.蝉镜数字人插件(get_chanjing_avatar_list、get_chanjing_video_detail、merge_chanjing_avatar)
2.工作流节点(选择器节点、输出节点、变量节点、代码节点)
3.卡片设计(横滑布局、动态格数渲染、卡片调用工作流事件等)
总体思路和设计概要:
1.给用户展示数字人模特列表,供用户选择
2.用户选择喜欢的数字人后,展示该数字人详细配置卡片(包括选择角色、调节背景、调节数字人姿态、数字人显示大小等)
3.选择填写完毕相关配置并提交配置内容后,制作数字人
4.展示制作数字人视频结果(数字人如果制作时间过长还未完成展示手动查询按钮)
搭建过程
1.展示列表工作流搭建
1.1 开始节点不做任何处理
1.2 直接调用get_chanjing_avatar_list插件获取数字人列表信息
1.3 用代码节点将数据列表进行清洗(分为男性角色列表、女性角色列表)
1.4 结束节点返回男性、女性数字人列表数据
2.选择数字人工作流搭建
2.1 开始节点接入用户选择的数字人相关信息(包括id、name等等)
2.2 通过代码节点转换数据成我们需要的格式
2.3 结束节点返回转换后的数
3.制作数字人工作流搭建
3.1 开始节点接受用户提交的所有数据(数字人id、背景、尺寸大小等等)
3.2 通过合成数字人插件merge_chanjing_avatar合成对应的数字人(将开始节点的相关参数引入到插件)
3.3 用选择器节点判断合成数字人插件返回的video_id是否异常(为空直接结束流程返回提示消息)
3.4 如果上一步流程正常则设计代码节点延迟流程(合成数字人需要一定时间所以要做一个延迟处理)
3.5 通过video_id用get_chanjing_video_detail插件查询数字人合成结果
3.6 通过变量节点临时存储上一节点查询的video_id(后面如果合成内容没有完成将继续通过video_id进行5次延迟查询,如果还未生成完成则用户可以通过卡片手动查询结果)
3.7 再通过选择节点根据上一节点查询的progress判断是否生成完毕(progress未达到100时重复延时请求的过程5次)
3.8 如果已经合成完毕,将视频链接返回,needBtn设置为fasle(未合成完毕时展示按钮,用户点击按钮后可以手动查询合成结果)
4.手动获取数字人结果工作流搭建
4.1 开始节点不做任何处理
4.2 变量节点获取当前数字人videoID
4.3 通过变量节点中的videoID,用插件get_chanjing_video_detail查询数字人合成结果
4.4 结束节点返回查询结果
卡片设计
1.展示列表工作流卡片设计
1.1 采用横滑布局组件,将数字人分为上下两部分(女性、男性)
1.2 通过设置卡片变量数组(womanList、manList),动态绑定横滑格数
1.3 然后为每个格数动态绑定点击事件(采用直接调用工作流的方式:selsect_Digital_Human)配置好入参即可
2.选择数字人工作流卡片设计
2.1 通过音频组件等,把数字人名称、形象图、试听音频进行绑定
2.2 然后用横滑布局组件绑定数字人口播姿态、用下拉选择器组件绑定人物姿态选择结果、是否要绿幕等
2.3 最后用表单输入框组件绑定数字人宽、高以及口播文案。提交按钮绑定调用工作流合成数字人,配置好入参即可
3.制作数字人工作流卡片设计
3.1 用视频组件绑定数字人视频url,“视频下载地址”按钮事件绑定数字人视频url
3.2 最后“获取视频”模块会根据当前视频是否生成完成进行动态显示隐藏(视频合成没有完成则显示),并绑定事件调用手动获取数字人视频的工作流
这样《AI数字人》整个工作流和卡片设计就做完了,将它们绑定到智能体的工作流以及卡片部位就大功告成啦!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。