中文句子的词分割算法:MaxMatch

今天阅读的时候,发现了一个分割句子中词语的算法:MaxMatch,这个算法在中文应用中效果很好。

这是一个贪心算法,在指定的字典(dictionary)中查找词汇并进行句子的分割。

下面是一个应用本算法的例子:

Input: 他特别喜欢北京烤鸭

Output: 他 特别 喜欢 北京烤鸭

算法的伪代码如下:


这个算法在中文的应用中比英文好很多,因为中文词汇比英文短。

为了检验词汇分割的效果,我们可以使用词语错误率(word error rate)来衡量。

上述的算法是传统的算法。目前准确率最高的中文词汇分割算法是通过监督机器学习(supervised machine learning)训练的统计序列模型(statistical sequence model),这个我们以后再写文章详细讨论。

<> 一些背景知识: 1. 一个汉字在c\c++的存储, 使用2个字节(char)存储; 2. 汉字存储的第一个char, 其值一定大于'~'(0111 1110=126),否则将导致识别歧义; 此处, 使用"单ASCII字符"来表示非 单ASCII字符的判断, 可以根据以下规则(主要R3, R4); : 一个字符串的长度==1,那肯定是一个ASCII字符; : 一个字符串的长度==2,且第1个ASCII字符的编码小于'~'; 那肯定是2个单ASCII字符; -- (PS: "") : 一个字符串的长度==3,且中间的ASCII字符的编码小于'~'; 那第3个肯定是单ASCII字符; (前2个是否构成1个汉字不能确定) : (基于R3)如果第pos个位置的ASCII字符编码小于'~', 那从下标pos,pos+1处拆分字符串 (下标pos归前串),将不会导致乱码; A 或者 B 的选择,需要知道以下信息: (1). 从 cut_base_pos 开始到 pos_B 结束的这段字符串内, 最后一个单ASCII字符的结束下标 p 在此基础上, 若使用: y -- 表示单ASCII字符(已确定的); x -- 表示可能是 单ASCII字符,也可能是 汉字的半个ASCII存储码; 那么一段长度为N的字符串,按照存储的ASCII码可以表示为一串如下的字符串(不包含[]) "x .. x][x .. x y x .. x][x .. x", 其中 s,e表示当前正在分析的一段子串(0<=s<e<=N, 下标e-s = 期望的分割长度cut_size) ^ ^ ^ ^ ^ 0 s p e N 在 【s, e】 之间, 查找结束下标p 的思路: 从e开始向s查找, 找到 第一个y 后 break; 记录下标p, 则从位置p开始, 是一个正确的分割(cut); 但此分割并不是一个最好的分割. 可以在 位置p上, 再加上 2K 个长度, 使 p+2K 与 pos_B 最接近即可. 可以认为从2K个长度的内容是K个汉字(实际上并不一定..), 但并不影响这个最佳分割的正确性! :)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值