PyTorch
danerli
这个作者很懒,什么都没留下…
展开
-
torch.triu(input, diagonal=0, out=None)
torch.triu(input, diagonal=0, out=None) → Tensor返回矩阵上三角部分,其余部分定义为0。Parameters:input (Tensor) – the input tensordiagonal (int, optional) – the diagonal to considerout (Tensor, optional) – the out...原创 2018-10-03 17:51:21 · 17638 阅读 · 2 评论 -
torch.cat(inputs, dimension=0)
参数:inputs (sequence of Tensors) – 可以是任意相同Tensor 类型的python 序列dimension (int, optional) – 沿着此维连接张量序列代码import torchx = torch.randn(2, 3)print(torch.cat((x, x, x))) #默认按行连接张量print(torch.cat((x...原创 2018-09-30 11:16:05 · 2711 阅读 · 0 评论 -
torch.sum(input, dim, out=None)
torch.sum(input, dim, out=None) → Tensorinput (Tensor) – 输入张量dim (int) – 缩减的维度out (Tensor, optional) – 结果张量代码:import torchx = torch.randn(4, 5)print(x)print(x.sum(0)) #按列求和print(x.sum(1))...原创 2018-09-30 12:32:31 · 46222 阅读 · 6 评论 -
torch.tensor.view(*args)
view(*args) → Tensor返回一个有相同数据但大小不同的tensor。 返回的tensor必须有与原tensor相同的数据和相同数目的元素,但可以有不同的大小。一个tensor必须是连续的contiguous()才能被查看。import torchx = torch.randn(4, 5)print('tensor原型:',x)print('tensor维度变换,由(4...原创 2018-09-30 13:04:05 · 9955 阅读 · 0 评论 -
torch.clamp(input, min, max, out=None)
torch.clamp(input, min, max, out=None) → Tensor将输入input张量每个元素的夹紧到区间 [min,max],并返回结果到一个新张量。input={min,if input <= mininput,if min<input <maxmax,if i...原创 2018-09-30 13:37:48 · 1811 阅读 · 0 评论 -
numpy.ravel(a, order='C')
numpy.ravel(a, order=‘C’)a是要进行改变形状的数组order : {‘C’,’F’, ‘A’, ‘K’}, optional由ravel()产生的数组中元素的顺序通常是“C风格”,也就是说,最右边的索引“改变最快”,所以[0,0]之后的元素是[0,1] 。如果数组被重新塑造成其他形状,数组又被视为“C-style”。NumPy通常创建按此顺序存储的数组,因此r...原创 2018-09-30 14:55:06 · 3175 阅读 · 0 评论 -
numpy.delete(arr, obj, axis=None)
numpy.delete(arr, obj, axis=None)arr:输入矩阵obj:在什么位置处理axis:这是一个可选参数,axis = None,1,0axis=None:arr会先按行展开,然后按照obj,删除第obj-1(从0开始)位置的数,返回一个行矩阵。axis = 0:按行删除axis = 1:按列删除import torchimport numpy as np...原创 2018-09-30 18:19:10 · 1418 阅读 · 0 评论 -
numpy.tile(A, reps)
numpy.tile(A, reps)Parameters: A : The input array.reps : The number of repetitions of A along each axisimport torchimport numpy as npx = torch.from_numpy(np.arange(4).reshape((1, 4)))print('...原创 2018-09-30 18:29:28 · 300 阅读 · 0 评论